An approximating algorithm on handling 3-D points cloud data was discussed for reconstruction of complicated curved surface. In this algorithm, the coordinate information of nodes both in internal and external regions...An approximating algorithm on handling 3-D points cloud data was discussed for reconstruction of complicated curved surface. In this algorithm, the coordinate information of nodes both in internal and external regions of partition interpolation was used to realize minimized least squares approximation error of surface fitting. The changes between internal and external interpolation regions are continuous and smooth. Meanwhile, surface shape has properties of local controllability, variation reduction, and convex hull. The practical example shows that this algorithm possesses a higher accuracy of curved surface reconstruction and also improves the distortion of curved surface reconstruction when typical approximating algorithms and unstable operation are used.展开更多
基金Supported by the Guangxi Provincial Natural Science Fund of China (No. 0832096)the Scientific Research Project of Education Department of Guangxi Province of China (No. 200708LX151)the Science Fund of Wuzhou University (No. 2008B008)
文摘An approximating algorithm on handling 3-D points cloud data was discussed for reconstruction of complicated curved surface. In this algorithm, the coordinate information of nodes both in internal and external regions of partition interpolation was used to realize minimized least squares approximation error of surface fitting. The changes between internal and external interpolation regions are continuous and smooth. Meanwhile, surface shape has properties of local controllability, variation reduction, and convex hull. The practical example shows that this algorithm possesses a higher accuracy of curved surface reconstruction and also improves the distortion of curved surface reconstruction when typical approximating algorithms and unstable operation are used.