This paper is concerned with three-dimensional numerical simulation of a plunging liquid jet. The transient processes of forming an air cavity around the jet, capturing an initially large air bubble, and the break-up ...This paper is concerned with three-dimensional numerical simulation of a plunging liquid jet. The transient processes of forming an air cavity around the jet, capturing an initially large air bubble, and the break-up of this large toroidal-shaped bubble into smaller bubbles were analyzed. A stabilized finite element method (FEM) was employed under parallel numerical simulations based on adaptive, unstructured grid and coupled with a level-set method to track the interface between air and liquid. These simulations show that the inertia of the liquid jet initially depresses the pool's surface, forming an annular air cavity which surrounds the liquid jet. A toroidal liquid eddy which is subse- quently formed in the liquid pool results in air cavity collapse, and in turn entrains air into the liquid pool from the unstable annular air gap region around the liquid jet.展开更多
研究表孔采用上翘或下跌式、深孔采用下弯式布置所形成的表深孔上下差动出流,水股分层分散射流在水垫塘内的流动特征和各水股射流之间的干扰碰撞特性。选用非定常不可压缩流动的N-S方程和RNGk-ε紊流模型,采用VOF(Volume of Fluid)法,...研究表孔采用上翘或下跌式、深孔采用下弯式布置所形成的表深孔上下差动出流,水股分层分散射流在水垫塘内的流动特征和各水股射流之间的干扰碰撞特性。选用非定常不可压缩流动的N-S方程和RNGk-ε紊流模型,采用VOF(Volume of Fluid)法,结合溪洛渡双曲拱坝水垫塘,对不同间距的多层二元射流进入消力池后的水流结构进行了数值模拟。分析不同水股间距对水垫塘底板的冲击压力的影响以及与流场、速度场的关系。展开更多
Submerged impinging jets in a plunge pool downstream of large dams are experimentally investigated in details. By use of the hot\|film anemometer, the velocity field in the plunge pool produced by middle orifices of 1...Submerged impinging jets in a plunge pool downstream of large dams are experimentally investigated in details. By use of the hot\|film anemometer, the velocity field in the plunge pool produced by middle orifices of 1∶400 scale Xiluodu spillway model is measured. The diffusive characteristics and energy dissipation mechanism of the submerged impinging jet in the plunge pool are analyzed.展开更多
基金supported by the Office of Naval Research(Grant ONRDC14292111)
文摘This paper is concerned with three-dimensional numerical simulation of a plunging liquid jet. The transient processes of forming an air cavity around the jet, capturing an initially large air bubble, and the break-up of this large toroidal-shaped bubble into smaller bubbles were analyzed. A stabilized finite element method (FEM) was employed under parallel numerical simulations based on adaptive, unstructured grid and coupled with a level-set method to track the interface between air and liquid. These simulations show that the inertia of the liquid jet initially depresses the pool's surface, forming an annular air cavity which surrounds the liquid jet. A toroidal liquid eddy which is subse- quently formed in the liquid pool results in air cavity collapse, and in turn entrains air into the liquid pool from the unstable annular air gap region around the liquid jet.
文摘研究表孔采用上翘或下跌式、深孔采用下弯式布置所形成的表深孔上下差动出流,水股分层分散射流在水垫塘内的流动特征和各水股射流之间的干扰碰撞特性。选用非定常不可压缩流动的N-S方程和RNGk-ε紊流模型,采用VOF(Volume of Fluid)法,结合溪洛渡双曲拱坝水垫塘,对不同间距的多层二元射流进入消力池后的水流结构进行了数值模拟。分析不同水股间距对水垫塘底板的冲击压力的影响以及与流场、速度场的关系。
文摘Submerged impinging jets in a plunge pool downstream of large dams are experimentally investigated in details. By use of the hot\|film anemometer, the velocity field in the plunge pool produced by middle orifices of 1∶400 scale Xiluodu spillway model is measured. The diffusive characteristics and energy dissipation mechanism of the submerged impinging jet in the plunge pool are analyzed.