Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consid...Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions,which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling.Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperaturepressure action and isothermal-variable pressure action on the basis of sample feasibility analysis.According to research,the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions,and it becomes more ductile.This reduces the amount of time it takes for the rock to transition from brittle to plastic.When temperature is taken into account,both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower,and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization.The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well#ZS5 are compared.This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved.展开更多
The control criteria for structural deformation and the evaluation of operational safety performance for large-diameter shield tunnel segments are not yet clearly defined.To address this issue,a refined 3D finite elem...The control criteria for structural deformation and the evaluation of operational safety performance for large-diameter shield tunnel segments are not yet clearly defined.To address this issue,a refined 3D finite element model was established to analyze the transverse deformation response of a large-diameter segmental ring.By analyzing the stress,deformation,and crack distribution of large-diameter segments under overload conditions,the transverse deformation of the segmental ring could be divided into four stages.The main reasons for the decrease in segmental ring stiffness were found to be the extensive development of cracks and the complete formation of four plastic hinges.The deformation control value for the large-diameter shield tunnel segment is chosen as 8%o of the segment's outer diameter,representing the transverse deformation during the formation of the first semi-plastic hinge(i.e.,the first yield point)in the structure.This control value can serve as a reinforcement standard for preventing the failure of large-diameter shield tunnel segments.The flexural bearing capacity characteristic curve of segments was used to evaluate the structural strength of a large-diameter segmental ring.It was discovered that the maximum internal force combination of the segment did not exceed the segment ultimate bearing capacity curve(SUBC).However,the combination of internal force at 9°,85°,and 161°of the joints,and their symmetrical locations about the 0°-180°axis exceeded the joint ultimate bearing capacity curve(JUBC).The results indicate that the failure of the large-diameter segment lining was mainly due to insufficient joint strength,leading to an instability failure.The findings from this study can be used to develop more effective maintenance strategies for large-diameter shield tunnel segments to ensure their long-term performance.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.42172147)PetroChina Major Science and Technology Project(Grant No.ZD2019-183-002).
文摘Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions,which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling.Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperaturepressure action and isothermal-variable pressure action on the basis of sample feasibility analysis.According to research,the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions,and it becomes more ductile.This reduces the amount of time it takes for the rock to transition from brittle to plastic.When temperature is taken into account,both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower,and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization.The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well#ZS5 are compared.This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved.
基金supported by the National Natural Science Foundation of China(Nos.52122807,52090082,and 51938005)the Youth Science and Technology Innovation Talent Project of Hunan Province(No.2021RC3043),China。
文摘The control criteria for structural deformation and the evaluation of operational safety performance for large-diameter shield tunnel segments are not yet clearly defined.To address this issue,a refined 3D finite element model was established to analyze the transverse deformation response of a large-diameter segmental ring.By analyzing the stress,deformation,and crack distribution of large-diameter segments under overload conditions,the transverse deformation of the segmental ring could be divided into four stages.The main reasons for the decrease in segmental ring stiffness were found to be the extensive development of cracks and the complete formation of four plastic hinges.The deformation control value for the large-diameter shield tunnel segment is chosen as 8%o of the segment's outer diameter,representing the transverse deformation during the formation of the first semi-plastic hinge(i.e.,the first yield point)in the structure.This control value can serve as a reinforcement standard for preventing the failure of large-diameter shield tunnel segments.The flexural bearing capacity characteristic curve of segments was used to evaluate the structural strength of a large-diameter segmental ring.It was discovered that the maximum internal force combination of the segment did not exceed the segment ultimate bearing capacity curve(SUBC).However,the combination of internal force at 9°,85°,and 161°of the joints,and their symmetrical locations about the 0°-180°axis exceeded the joint ultimate bearing capacity curve(JUBC).The results indicate that the failure of the large-diameter segment lining was mainly due to insufficient joint strength,leading to an instability failure.The findings from this study can be used to develop more effective maintenance strategies for large-diameter shield tunnel segments to ensure their long-term performance.