The simulation of the whole ship-bridge collision process can be effectively carried out by nonlinear dynamic finite element method. Based on the simple description of the theory, a scenario of a 40000 DWT oil tanker ...The simulation of the whole ship-bridge collision process can be effectively carried out by nonlinear dynamic finite element method. Based on the simple description of the theory, a scenario of a 40000 DWT oil tanker colliding with a bridge across the Yangtze River is designed for simulation. The technology of structure modeling and the determination of related parameters are introduced. The deformation of the bulb bow, the history,of collision force change, the exchange of collision energy and the stress distribution. of the bridge pier-are described in detail, which: are of great value to bridge design and bridge pier damage estimation. mechanical characters in the process of ship-bridge collision are described. More accurate results can be produced by finite element method than that by empirical formulas and simplified analytical methods.展开更多
A 2D micro-mechanical model was proposed to study the compressive failure of Uni Directional(UD) carbon/epoxy composite. Considering the initial imperfection and strength distribution of the fiber, the plasticity an...A 2D micro-mechanical model was proposed to study the compressive failure of Uni Directional(UD) carbon/epoxy composite. Considering the initial imperfection and strength distribution of the fiber, the plasticity and ductile damage of the matrix, the failure of T300/914 UD composite under longitudinal compression and in-plane combined loads was simulated by this model. Simulation results show that the longitudinal compressive failure of the UD composite is caused by the plastic yielding of the matrix in kink band, and the fiber initial imperfection is the main reason for it. Under in-plane combined loads, the stress state of the matrix in kink band is changed, which affects the longitudinal compressive failure modes and strength of UD composite.The failure envelope of r_1–s_(12) and r_1–r_2 are obtained by the micro-mechanical model. Meanwhile,the compressive failure mechanism of the UD composite is analyzed. Numerical results agree well with the experimental data, which verifies the validity of the micro-mechanical model.展开更多
To investigate the damage localization effects of the thrust chamber wall caused by combustions in LOX/methane rocket engines, a fluid-structural coupling computational methodology with a multi-channel model is develo...To investigate the damage localization effects of the thrust chamber wall caused by combustions in LOX/methane rocket engines, a fluid-structural coupling computational methodology with a multi-channel model is developed to obtain 3-demensioanl thermal and structural responses.Heat and mechanical loads are calculated by a validated finite volume fluid-thermal coupling numerical method considering non-premixed combustion processes of propellants. The methodology is subsequently performed on an LOX/methane thrust chamber under cyclic operation. Results show that the heat loads of the thrust chamber wall are apparently non-uniform in the circumferential direction. There are noticeable disparities between different cooling channels in terms of temperature and strain distributions at the end of the hot run phase, which in turn leads to different temperature ranges, strain ranges, and residual strains during one cycle. With the work cycle proceeding, the circumferential localization effect of the residual strain would be significantly enhanced. A post-processing damage analysis reveals that the low-cycle fatigue damage accumulated in each cycle is almost unchanged, while the quasi static damage accumulated in a considered cycle declines until stabilized after several cycles. The maximum discrepancy of the predicted lives between different cooling channels is about 30%.展开更多
文摘The simulation of the whole ship-bridge collision process can be effectively carried out by nonlinear dynamic finite element method. Based on the simple description of the theory, a scenario of a 40000 DWT oil tanker colliding with a bridge across the Yangtze River is designed for simulation. The technology of structure modeling and the determination of related parameters are introduced. The deformation of the bulb bow, the history,of collision force change, the exchange of collision energy and the stress distribution. of the bridge pier-are described in detail, which: are of great value to bridge design and bridge pier damage estimation. mechanical characters in the process of ship-bridge collision are described. More accurate results can be produced by finite element method than that by empirical formulas and simplified analytical methods.
文摘A 2D micro-mechanical model was proposed to study the compressive failure of Uni Directional(UD) carbon/epoxy composite. Considering the initial imperfection and strength distribution of the fiber, the plasticity and ductile damage of the matrix, the failure of T300/914 UD composite under longitudinal compression and in-plane combined loads was simulated by this model. Simulation results show that the longitudinal compressive failure of the UD composite is caused by the plastic yielding of the matrix in kink band, and the fiber initial imperfection is the main reason for it. Under in-plane combined loads, the stress state of the matrix in kink band is changed, which affects the longitudinal compressive failure modes and strength of UD composite.The failure envelope of r_1–s_(12) and r_1–r_2 are obtained by the micro-mechanical model. Meanwhile,the compressive failure mechanism of the UD composite is analyzed. Numerical results agree well with the experimental data, which verifies the validity of the micro-mechanical model.
文摘To investigate the damage localization effects of the thrust chamber wall caused by combustions in LOX/methane rocket engines, a fluid-structural coupling computational methodology with a multi-channel model is developed to obtain 3-demensioanl thermal and structural responses.Heat and mechanical loads are calculated by a validated finite volume fluid-thermal coupling numerical method considering non-premixed combustion processes of propellants. The methodology is subsequently performed on an LOX/methane thrust chamber under cyclic operation. Results show that the heat loads of the thrust chamber wall are apparently non-uniform in the circumferential direction. There are noticeable disparities between different cooling channels in terms of temperature and strain distributions at the end of the hot run phase, which in turn leads to different temperature ranges, strain ranges, and residual strains during one cycle. With the work cycle proceeding, the circumferential localization effect of the residual strain would be significantly enhanced. A post-processing damage analysis reveals that the low-cycle fatigue damage accumulated in each cycle is almost unchanged, while the quasi static damage accumulated in a considered cycle declines until stabilized after several cycles. The maximum discrepancy of the predicted lives between different cooling channels is about 30%.