We present three possible design options of laser plasma acceleration (LPA) for reaching a 100-GeV level energy by means of a multi-petawatt laser such as the 3.5-k J, 500-fs PETawatt Aquitane Laser (PETAL) at Fre...We present three possible design options of laser plasma acceleration (LPA) for reaching a 100-GeV level energy by means of a multi-petawatt laser such as the 3.5-k J, 500-fs PETawatt Aquitane Laser (PETAL) at French Alternative Energies and Atomic Energy Commission (CEA). Based on scaling of laser wakefield acceleration in the quasi-linear regime with the normalized vector potential a0 = 1.4(1.6), acceleration to 100 (130) GeV requires a 30-m-long plasma waveguide operated at the plasma density ne ≈ 7 ×10^15 c^m-3 with a channel depth An/ne = 20%, while a nonlinear laser wakefield accelerator in the bubble regime with a0 〉/ 2 can reach 100 GeV approximately in a 36/a0-m-long plasma through self-guiding. The third option is a hybrid concept that employs a ponderomotive channel created by a long leading pulse for guiding a short trailing driving laser pulse. The detail parameters for three options are evaluated, optimizing the operating plasma density at which a given energy gain is obtained over the dephasing length and the matched conditions for propagation of relativistic laser pulses in plasma channels, including the self-guiding. For the production of high-quality beams with 1%-level energy spread and a llr-mm-mrad- level transverse normalized emittance at 100-MeV energy, a simple scheme based on the ionization-induced injection mechanism may be conceived. We investigate electron beam dynamics and effects of synchrotron radiation due to betatron motion by solving the beam dynamics equations on energy and beam radius numerically. For the bubble regime case with a0 = 4, radiative energy loss becomes 10% at the maximum energy of 90 GeV.展开更多
This paper presents separation results of a mixture of nitrogen, argon and krypton ions in the process of plasma-optical mass separation on the POMS-E-3 separator model. We determined the behavior of the separation wi...This paper presents separation results of a mixture of nitrogen, argon and krypton ions in the process of plasma-optical mass separation on the POMS-E-3 separator model. We determined the behavior of the separation with a change in the value of magnetic field induction in the azimuthator and in the degree of compensation of the spatial charge in ion flows. An analysis is performed for experimental data by correlation with the results of a theoretical study and numerical experiments. The objectives of future experiments are outlined.展开更多
A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived.The presented spheroid cavity model is more consistent than the previous spherical and ellips...A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived.The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal models and it explains the mono-energetic electron trajectory more accurately,especially at the relativistic region.The maximum energy of electrons is calculated and it is shown that the maximum energy of the spheroid model is less than that of the spherical model.The electron energy spectrum is also calculated and it is found that the energy distribution ratio of electrons △E/E for the spheroid model under the conditions reported here is half that of the spherical model and it is in good agreement with the experimental value in the same conditions.As a result,the quasi-mono-energetic electron output beam interacting with the laser plasma can be more appropriately described with this model.展开更多
Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generat...Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and cavity electrostatic potential.展开更多
A new concept of a coaxial plasma dynamic accelerator with a self-energized magnetic compressor coil to simulate the effects of space debris impact is demonstrated. A brief description is presented about the pulse pow...A new concept of a coaxial plasma dynamic accelerator with a self-energized magnetic compressor coil to simulate the effects of space debris impact is demonstrated. A brief description is presented about the pulse power supply system including the charging circuit, start switch and current transfer system along with some of the key techniques for this kind of accelerator. Using this accelerator configuration, ceramic beads of 100 μm in diameter were accelerated to a speed as high as 18 km/sec. The facility can be used in a laboratory setting to study impact phenomena on solar array materials, potential structural materials for use in space.展开更多
基金supported by the National Natural Science Foundation of China(Nos.10834008,10974214,60921004,and 51175324)the National"973"Program of China(Nos.2011CB808104,2011CB808100,and 2010CB923203)supported by Chinese Academy of Sciences Visiting Professorship for Senior International Scientists(No.2010T2G02)
文摘We present three possible design options of laser plasma acceleration (LPA) for reaching a 100-GeV level energy by means of a multi-petawatt laser such as the 3.5-k J, 500-fs PETawatt Aquitane Laser (PETAL) at French Alternative Energies and Atomic Energy Commission (CEA). Based on scaling of laser wakefield acceleration in the quasi-linear regime with the normalized vector potential a0 = 1.4(1.6), acceleration to 100 (130) GeV requires a 30-m-long plasma waveguide operated at the plasma density ne ≈ 7 ×10^15 c^m-3 with a channel depth An/ne = 20%, while a nonlinear laser wakefield accelerator in the bubble regime with a0 〉/ 2 can reach 100 GeV approximately in a 36/a0-m-long plasma through self-guiding. The third option is a hybrid concept that employs a ponderomotive channel created by a long leading pulse for guiding a short trailing driving laser pulse. The detail parameters for three options are evaluated, optimizing the operating plasma density at which a given energy gain is obtained over the dephasing length and the matched conditions for propagation of relativistic laser pulses in plasma channels, including the self-guiding. For the production of high-quality beams with 1%-level energy spread and a llr-mm-mrad- level transverse normalized emittance at 100-MeV energy, a simple scheme based on the ionization-induced injection mechanism may be conceived. We investigate electron beam dynamics and effects of synchrotron radiation due to betatron motion by solving the beam dynamics equations on energy and beam radius numerically. For the bubble regime case with a0 = 4, radiative energy loss becomes 10% at the maximum energy of 90 GeV.
基金support of the Ministry of Education and Science of the Russian Federation grant to perform scientific work number 82 within the base portion of the state task No. 2014/53 from 2014 in the field of scientific activity
文摘This paper presents separation results of a mixture of nitrogen, argon and krypton ions in the process of plasma-optical mass separation on the POMS-E-3 separator model. We determined the behavior of the separation with a change in the value of magnetic field induction in the azimuthator and in the degree of compensation of the spatial charge in ion flows. An analysis is performed for experimental data by correlation with the results of a theoretical study and numerical experiments. The objectives of future experiments are outlined.
基金Project supported by the Research Deputy Office in the Islamic Azad University of Maragheh Branch
文摘A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived.The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal models and it explains the mono-energetic electron trajectory more accurately,especially at the relativistic region.The maximum energy of electrons is calculated and it is shown that the maximum energy of the spheroid model is less than that of the spherical model.The electron energy spectrum is also calculated and it is found that the energy distribution ratio of electrons △E/E for the spheroid model under the conditions reported here is half that of the spherical model and it is in good agreement with the experimental value in the same conditions.As a result,the quasi-mono-energetic electron output beam interacting with the laser plasma can be more appropriately described with this model.
文摘Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and cavity electrostatic potential.
基金the Programme for Scientific Instrument Development of the Chinese Academy of Sciences(No.y2003001)
文摘A new concept of a coaxial plasma dynamic accelerator with a self-energized magnetic compressor coil to simulate the effects of space debris impact is demonstrated. A brief description is presented about the pulse power supply system including the charging circuit, start switch and current transfer system along with some of the key techniques for this kind of accelerator. Using this accelerator configuration, ceramic beads of 100 μm in diameter were accelerated to a speed as high as 18 km/sec. The facility can be used in a laboratory setting to study impact phenomena on solar array materials, potential structural materials for use in space.