Immature embryos of rice varieties "Xiushui11" and "Chunjiang 11" precultured for 4d were infected and transformed by Agrobacterium tumefaciens strain EHA101/pExT7 (containing the spider insecticid...Immature embryos of rice varieties "Xiushui11" and "Chunjiang 11" precultured for 4d were infected and transformed by Agrobacterium tumefaciens strain EHA101/pExT7 (containing the spider insecticidal gene). The resistant cant were transferred onto the differentiation medium and plants were regenerated. The transformation frequency reached 56%-72% measured as numbers of Geneticin (G418)-resistant calli produced and 36%-60% measured as numbers of transgenic plants regenerated, respectively. PCR and Southern blot analysis of transgenic plants confirmed that the T-DNA had been integrated into the rice genome. Insect bioassays using T1 transgenic plants indicated that the mortality of the leaffolder (Cnaphalocrasis medinalis) after 7d of leaf feeding reached 38%-61% and the corrected mortality of the striped stem borer (Chilo suppressalis) after 7d of leaf feeding reached 16%-75%. The insect bioassay results demonstrated that the transgenic plants expressing the spider insecticidal protein conferred enhanced resistance to these pests.展开更多
In ethnopharmacology, and especially in traditional Chinese medicine, medicinal plants have been used for thousands of years. Similarly, agricultural plants have been used throughout the history of mankind. The recent...In ethnopharmacology, and especially in traditional Chinese medicine, medicinal plants have been used for thousands of years. Similarly, agricultural plants have been used throughout the history of mankind. The recent development of the genetic engineering of plants to produce plants with desirable features adds a new and growing dimension to humanity’s usage of plants. The biotechnology of plants has come of age and a plethora of bioengineering applications in this context have been delineated during the past few decades. Callus cultures and suspension cell cultures offer a wide range of usages in pharmacology and pharmacy (including Chinese medicine), as well as in agriculture and horticulture. This review provides a timely overview of the advancements that have been made with callus cultures in these scientific fields. Genetically modified callus cultures by gene technological techniques can be used for the synthesis of bioactive secondary metabolites and for the generation of plants with improved resistance against salt, draft, diseases, and pests. Although the full potential of callus plant culture technology has not yet been exploited, the time has come to develop and market more callus culture-based products.展开更多
文摘Immature embryos of rice varieties "Xiushui11" and "Chunjiang 11" precultured for 4d were infected and transformed by Agrobacterium tumefaciens strain EHA101/pExT7 (containing the spider insecticidal gene). The resistant cant were transferred onto the differentiation medium and plants were regenerated. The transformation frequency reached 56%-72% measured as numbers of Geneticin (G418)-resistant calli produced and 36%-60% measured as numbers of transgenic plants regenerated, respectively. PCR and Southern blot analysis of transgenic plants confirmed that the T-DNA had been integrated into the rice genome. Insect bioassays using T1 transgenic plants indicated that the mortality of the leaffolder (Cnaphalocrasis medinalis) after 7d of leaf feeding reached 38%-61% and the corrected mortality of the striped stem borer (Chilo suppressalis) after 7d of leaf feeding reached 16%-75%. The insect bioassay results demonstrated that the transgenic plants expressing the spider insecticidal protein conferred enhanced resistance to these pests.
文摘In ethnopharmacology, and especially in traditional Chinese medicine, medicinal plants have been used for thousands of years. Similarly, agricultural plants have been used throughout the history of mankind. The recent development of the genetic engineering of plants to produce plants with desirable features adds a new and growing dimension to humanity’s usage of plants. The biotechnology of plants has come of age and a plethora of bioengineering applications in this context have been delineated during the past few decades. Callus cultures and suspension cell cultures offer a wide range of usages in pharmacology and pharmacy (including Chinese medicine), as well as in agriculture and horticulture. This review provides a timely overview of the advancements that have been made with callus cultures in these scientific fields. Genetically modified callus cultures by gene technological techniques can be used for the synthesis of bioactive secondary metabolites and for the generation of plants with improved resistance against salt, draft, diseases, and pests. Although the full potential of callus plant culture technology has not yet been exploited, the time has come to develop and market more callus culture-based products.