Phosphorus is one of the macronutrients essential for plant growth and development. Many soils around the world are deficient in phosphate (Pi) which is the form of phosphorus that plants can absorb and utilize. To ...Phosphorus is one of the macronutrients essential for plant growth and development. Many soils around the world are deficient in phosphate (Pi) which is the form of phosphorus that plants can absorb and utilize. To cope with the stress of Pi starvation, plants have evolved many elaborate strategies to enhance the acquisition and utilization of Pi from the environment. These strategies include morphological, biochemical and physiological responses which ultimately enable plants to better survive under low Pi conditions. Though these adaptive responses have been well described because of their ecological and agricultural importance, our studies on the molecular mechanisms underlying these responses are still in their infancy. In the last decade, significant progresses have been made towards the identification of the molecular components which are involved in the control of plant responses to Pi starvation. In this article, we first provide an overview of some major responses of plants to Pi starvation, then summarize what we have known so far about the signaling components involved in these responses, as well as the roles of sugar and phytohormones.展开更多
The phytohormones are pivotal chemical messengers produced within the plant that regulate its growth and development, and responses to environmental stimuli. Drought and salinity are adverse environmental factors that...The phytohormones are pivotal chemical messengers produced within the plant that regulate its growth and development, and responses to environmental stimuli. Drought and salinity are adverse environmental factors that disturb the plant hormonal balance. Accordingly, these hormonal fluctuations modify the cellular dynamic and hence they play a central role in regulating plant growth responses to abiotic stresses such as drought and salinity. The present review gives an update about the alterations of endogenous phytohormones such as abscisic acid (ABA), auxins (Aux), cytokinins (CKs), ethylene (ET), gibberellins (GAs), jasmonates (JAs), salicylic acid (SA), brassinosteroids (BRs), strigolactones (SLs) and nitric oxide (NO) that occur as part of the adaptative responses of plant against drought and salt stresses. Better understanding of the endogenous hormonal changes during the plant response to both abiotic stresses will contribute, in part, to the development of stress-tolerant plants.展开更多
文摘Phosphorus is one of the macronutrients essential for plant growth and development. Many soils around the world are deficient in phosphate (Pi) which is the form of phosphorus that plants can absorb and utilize. To cope with the stress of Pi starvation, plants have evolved many elaborate strategies to enhance the acquisition and utilization of Pi from the environment. These strategies include morphological, biochemical and physiological responses which ultimately enable plants to better survive under low Pi conditions. Though these adaptive responses have been well described because of their ecological and agricultural importance, our studies on the molecular mechanisms underlying these responses are still in their infancy. In the last decade, significant progresses have been made towards the identification of the molecular components which are involved in the control of plant responses to Pi starvation. In this article, we first provide an overview of some major responses of plants to Pi starvation, then summarize what we have known so far about the signaling components involved in these responses, as well as the roles of sugar and phytohormones.
文摘The phytohormones are pivotal chemical messengers produced within the plant that regulate its growth and development, and responses to environmental stimuli. Drought and salinity are adverse environmental factors that disturb the plant hormonal balance. Accordingly, these hormonal fluctuations modify the cellular dynamic and hence they play a central role in regulating plant growth responses to abiotic stresses such as drought and salinity. The present review gives an update about the alterations of endogenous phytohormones such as abscisic acid (ABA), auxins (Aux), cytokinins (CKs), ethylene (ET), gibberellins (GAs), jasmonates (JAs), salicylic acid (SA), brassinosteroids (BRs), strigolactones (SLs) and nitric oxide (NO) that occur as part of the adaptative responses of plant against drought and salt stresses. Better understanding of the endogenous hormonal changes during the plant response to both abiotic stresses will contribute, in part, to the development of stress-tolerant plants.