The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated. The analysis is based on the exact elasticity equations for the plane stress problem. ...The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated. The analysis is based on the exact elasticity equations for the plane stress problem. The stress function is introduced and assumed in the form of a polynomial of the longitudinal coordinate. The expressions for stress components are then educed from the stress function by simple differentiation. The stress function is determined from the compatibility equation as well as the boundary conditions by a skilful deduction. The analytical solution is compared with FEM calculation, indicating a good agreement.展开更多
In this paper, an exact analytical solution is presented for a transversely isotropic functionally graded magnetomelectro-elastic (FGMEE) cantilever beam, which is subjected to a uniform load on its upper surface, a...In this paper, an exact analytical solution is presented for a transversely isotropic functionally graded magnetomelectro-elastic (FGMEE) cantilever beam, which is subjected to a uniform load on its upper surface, as well as the concentrated force and moment at the free end. This solution can be applied for any form of gradient distribution. For the basic equations of plane problem, all the partial differential equations governing the stress field, electric, and magnetic potentials are derived. Then, the expressions of Airy stress, electric, and magnetic potential functions are assumed as quadratic polynomials of the longitudinal coordinate. Based on all the boundary conditions, the exact expressions of the three functions can be determined. As numerical examples, the material parameters are set as exponential and linear distributions in the thickness direction. The effects of the material parameters on the mechanical, electric, and magnetic fields of the cantilever beam are analyzed in detail.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.10472102 and 10432030)
文摘The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated. The analysis is based on the exact elasticity equations for the plane stress problem. The stress function is introduced and assumed in the form of a polynomial of the longitudinal coordinate. The expressions for stress components are then educed from the stress function by simple differentiation. The stress function is determined from the compatibility equation as well as the boundary conditions by a skilful deduction. The analytical solution is compared with FEM calculation, indicating a good agreement.
基金supported by the National Natural Science Foundation of China(Nos.10772106 and11072138)the Shanghai Leading Academic Discipline Project(No.S30106)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(No.20113108110005)the Natural Science Foundation Project of Shanghai(No.15ZR1416100)
文摘In this paper, an exact analytical solution is presented for a transversely isotropic functionally graded magnetomelectro-elastic (FGMEE) cantilever beam, which is subjected to a uniform load on its upper surface, as well as the concentrated force and moment at the free end. This solution can be applied for any form of gradient distribution. For the basic equations of plane problem, all the partial differential equations governing the stress field, electric, and magnetic potentials are derived. Then, the expressions of Airy stress, electric, and magnetic potential functions are assumed as quadratic polynomials of the longitudinal coordinate. Based on all the boundary conditions, the exact expressions of the three functions can be determined. As numerical examples, the material parameters are set as exponential and linear distributions in the thickness direction. The effects of the material parameters on the mechanical, electric, and magnetic fields of the cantilever beam are analyzed in detail.