Recently, stratospheric airships prefer to employ a vectored tail rotor or differential main propellers for the yaw control, rather than the control surfaces like common low-altitude airship. The load capacity of vect...Recently, stratospheric airships prefer to employ a vectored tail rotor or differential main propellers for the yaw control, rather than the control surfaces like common low-altitude airship. The load capacity of vectored mechanism and propellers are always limited by the weight and strength, which bring challenges for the attitude controller. In this paper, the yaw channel of airship dynamics is firstly rewritten as a simplified two-order dynamics equation and the dynamic charac- teristics is analyzed with a phase plane method. Analysis shows that when ignoring damping, the yaw control channel is available to the minimum principle of Pontryagin for optimal control, which can obtain a Bang-Bang controller. But under this controller, the control output could he bouncing around the theoretical switch curve due to the presence of disturbance and damping, which makes adverse effects for the servo structure. Considering the structure requirements of actuators, a phase plane method controller is employed, with a dead zone surrounded by several phase switch curve. Thus, the controller outputs are limited to finite values. Finally, through the numerical simulation and actual flight experiment, the method is proved to be effective.展开更多
集建模、制导控制律设计与数学仿真分析于一体的建模与仿真平台是进行空天飞机再入制导导航与控制系统(Guidance,Navigation and Control,GNC)研究的有效手段。提出一种基于Matlab平台和STK软件的空天飞机再入GNC一体化建模与仿真平台...集建模、制导控制律设计与数学仿真分析于一体的建模与仿真平台是进行空天飞机再入制导导航与控制系统(Guidance,Navigation and Control,GNC)研究的有效手段。提出一种基于Matlab平台和STK软件的空天飞机再入GNC一体化建模与仿真平台方案。基于Matlab平台进行二次开发,建立空天飞机建模工具,开发制导控制律辅助设计工具和数学仿真程序,利用STK软件进行结果的可视化仿真,为空天飞机再入GNC系统研究提供有效的建模、设计与仿真分析工具。展开更多
Inverted pendulum models are commonly used to study the bio-mechanics of biped walkers. In its simplest form, the inverted pendulum consists of a point mass attached to two straight mass-less legs. Most works constrai...Inverted pendulum models are commonly used to study the bio-mechanics of biped walkers. In its simplest form, the inverted pendulum consists of a point mass attached to two straight mass-less legs. Most works constrain the motion of the mass to the sagittal plane, i.e. the plane perpendicular to the ground that contains the direction toward the biped is walking. In this article, we remove this constrain to study the oscillations, the mass experiences in the direction perpendicular to the sagittal plane as the biped walks. While small, these lateral oscillations are unavoidable and of importance in the understanding of balance and stability of walkers, as well as walkers induced oscillations in pedestrian bridges.展开更多
The variational statement of synthesis problem is generalized in order to account the additional requirements to the synthesized radiation pattern (RP) and field distribution in the specified points of near zone. For ...The variational statement of synthesis problem is generalized in order to account the additional requirements to the synthesized radiation pattern (RP) and field distribution in the specified points of near zone. For this aim, the minimizing functional is supplemented by term providing the possibility to minimize the values of field in these points;creating the deep zeros in the RP for the certain angular coordinates is realized too. The approach foresees reduction of an explicit formula for field values in a near zone. The results of computational modeling testify the possibility to create zeros in the given RP and to minimize the values of field in a near zone of plane arrays in a great extent.展开更多
基金sponsored by the National Defense Science and Technology Innovation Fund Projects of Chinese Academy of Science(No.CXJJ-14-M06)
文摘Recently, stratospheric airships prefer to employ a vectored tail rotor or differential main propellers for the yaw control, rather than the control surfaces like common low-altitude airship. The load capacity of vectored mechanism and propellers are always limited by the weight and strength, which bring challenges for the attitude controller. In this paper, the yaw channel of airship dynamics is firstly rewritten as a simplified two-order dynamics equation and the dynamic charac- teristics is analyzed with a phase plane method. Analysis shows that when ignoring damping, the yaw control channel is available to the minimum principle of Pontryagin for optimal control, which can obtain a Bang-Bang controller. But under this controller, the control output could he bouncing around the theoretical switch curve due to the presence of disturbance and damping, which makes adverse effects for the servo structure. Considering the structure requirements of actuators, a phase plane method controller is employed, with a dead zone surrounded by several phase switch curve. Thus, the controller outputs are limited to finite values. Finally, through the numerical simulation and actual flight experiment, the method is proved to be effective.
文摘集建模、制导控制律设计与数学仿真分析于一体的建模与仿真平台是进行空天飞机再入制导导航与控制系统(Guidance,Navigation and Control,GNC)研究的有效手段。提出一种基于Matlab平台和STK软件的空天飞机再入GNC一体化建模与仿真平台方案。基于Matlab平台进行二次开发,建立空天飞机建模工具,开发制导控制律辅助设计工具和数学仿真程序,利用STK软件进行结果的可视化仿真,为空天飞机再入GNC系统研究提供有效的建模、设计与仿真分析工具。
文摘Inverted pendulum models are commonly used to study the bio-mechanics of biped walkers. In its simplest form, the inverted pendulum consists of a point mass attached to two straight mass-less legs. Most works constrain the motion of the mass to the sagittal plane, i.e. the plane perpendicular to the ground that contains the direction toward the biped is walking. In this article, we remove this constrain to study the oscillations, the mass experiences in the direction perpendicular to the sagittal plane as the biped walks. While small, these lateral oscillations are unavoidable and of importance in the understanding of balance and stability of walkers, as well as walkers induced oscillations in pedestrian bridges.
文摘The variational statement of synthesis problem is generalized in order to account the additional requirements to the synthesized radiation pattern (RP) and field distribution in the specified points of near zone. For this aim, the minimizing functional is supplemented by term providing the possibility to minimize the values of field in these points;creating the deep zeros in the RP for the certain angular coordinates is realized too. The approach foresees reduction of an explicit formula for field values in a near zone. The results of computational modeling testify the possibility to create zeros in the given RP and to minimize the values of field in a near zone of plane arrays in a great extent.