期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Single View Based Measurement on Space Planes 被引量:9
1
作者 Guang-HuiWang Zhan-YiHu Fu-ChaoWu 《Journal of Computer Science & Technology》 SCIE EI CSCD 2004年第3期374-382,共9页
The plane metrology using a single uncalibrated image is studied in the paper, and three novel approaches are proposed. The first approach, namely key-line-based method, is an improvement over the widely used key-poin... The plane metrology using a single uncalibrated image is studied in the paper, and three novel approaches are proposed. The first approach, namely key-line-based method, is an improvement over the widely used key-point-based method, which uses line correspondences directly to compute homography between the world plane and its image so as to increase the computational accuracy. The second and third approaches are both based on a pair of vanishing points from two orthogonal sets of parallel lines in the space plane together with two unparallel referential distances, but the two methods deal with the problem in different ways. One is from the algebraic viewpoint which first maps the image points to an affine space via a transformation constructed from the vanishing points, and then computes the metric distance according to the relationship between the affine space and the Euclidean space, while the other is from the geometrical viewpoint based on the invariance of cross ratios. The second and third methods avoid the selection of control points and are widely applicable. In addition, a brief description on how to retrieve other geometrical entities on the space plane, such as distance from a point to a line, angle formed by two lines, etc., is also presented in the paper. Extensive experiments on simulated data as well as on real images show that the first and the second approaches are of better precision and stronger robustness than the key-point-based one and the third one, since these two approaches are fundamentally based on line information. 展开更多
关键词 single view metrology projective geometry geometrical parameter retrieval plane homography
原文传递
Easy calibration method of vision system for in-situ measurement of strain of thin films 被引量:3
2
作者 Jun-Hyub PARK Dong-Joong KANG +5 位作者 Myung-Soo SHIN Sung-Jo LIM Son-Cheol YU Kwang-Soo LEE Jong-Eun HA Sung-Hoon CHOA 《中国有色金属学会会刊:英文版》 CSCD 2009年第B09期243-249,共7页
An easy calibration method was presented for in-situ measurement of displacement in the order of nanometer during micro-tensile test for thin films by using CCD camera as a sensing device. The calibration of the sensi... An easy calibration method was presented for in-situ measurement of displacement in the order of nanometer during micro-tensile test for thin films by using CCD camera as a sensing device. The calibration of the sensing camera in the system is a central element part to measure displacement in the order of nanometer using images taken with the camera. This was accomplished by modeling the optical projection through the camera lens and relative locations between the object and camera in 3D space. A set of known 3D points on a plane where the film is located on is projected to an image plane as input data. These points, known as a calibration points, are then used to estimate the projection parameters of the camera. In the measurement system of the micro-scale by CCD camera, the calibration data acquisition and one-to-one matching steps between the image and 3D planes need precise data extraction procedures and repetitive user's operation to calibrate the measuring devices. The lack of the robust image feature extraction and easy matching prevent the practical use of these methods. A data selection method was proposed to overcome these limitations and offer an easy and convenient calibration of a vision system that has the CCD camera and the 3D reference plane with calibration marks of circular type on the surface of the plane. The method minimizes the user's intervention such as the fine tuning of illumination system and provides an efficient calibration method of the vision system for in-situ axial displacement measurement of the micro-tensile materials. 展开更多
关键词 标定方法 视觉系统 原位测试 应变 薄膜
下载PDF
纹理映射中的平面校正技术研究 被引量:2
3
作者 周婷婷 韦穗 +2 位作者 章权兵 翟鸣 鲍文霞 《微机发展》 2004年第10期70-72,共3页
为了快速实时地进行由平面组成的结构景物的3D建模问题,文中介绍了一种在进行图像3D重构时纹理映射中的平面校正方法。介绍了三角形模型在图像处理、图形绘制、虚拟现实等技术中的重要作用。从射影几何的角度出发,给出了从两幅视图进行... 为了快速实时地进行由平面组成的结构景物的3D建模问题,文中介绍了一种在进行图像3D重构时纹理映射中的平面校正方法。介绍了三角形模型在图像处理、图形绘制、虚拟现实等技术中的重要作用。从射影几何的角度出发,给出了从两幅视图进行景物三维重构的分层重构方法。在已知欧氏重构即摄像机内参数的基础上,介绍一种基于标定的平面射影失真矫正方法。通过此方法,将矫正过的纹理映射到欧式点重构结构中,得到景物的3D模型。经实验验证,这种方法在处理由平面组成的景物的3D重构中是实时有效的。 展开更多
关键词 多边形模型 纹理映射 平面矫正 平面单应
下载PDF
基于图像单应矩阵及边缘优化的自动平面度检测方法 被引量:1
4
作者 谢文成 陈金友 《仪表技术与传感器》 CSCD 北大核心 2023年第3期88-93,共6页
零件平面形状公差是体现零件平面凹凸高度的重要指标,为实现在线平面度检测,提出一种基于图像单应矩阵和边缘优化的自动平面度检测算法。首先利用平面单应矩阵约束尺度不变特征描述子对待检平面特征进行粗定位。然后,利用霍夫直线变换... 零件平面形状公差是体现零件平面凹凸高度的重要指标,为实现在线平面度检测,提出一种基于图像单应矩阵和边缘优化的自动平面度检测算法。首先利用平面单应矩阵约束尺度不变特征描述子对待检平面特征进行粗定位。然后,利用霍夫直线变换检测零件边缘直线轮廓,构建边角结构体搜索轮廓包围的平面区域,获得优化的图像平面。根据视觉成像与激光三角重建原理求解对应的三维点云平面特征。实验表明:该方法有效实现了图像与三维点云的平面自动提取,自动平面度检测时间3~5 s,提升了平面度检测效率及自动化水平。 展开更多
关键词 平面度检测 机器视觉 激光测量 平面单应性 自动化
下载PDF
基于人造物体直线段结构特征的不变性识别
5
作者 危辉 裘禛宇 《计算机学报》 EI CSCD 北大核心 2010年第6期1088-1099,共12页
传统的用假设验证法进行三维物体识别的方法需要通过一组非线性方程组求解从模型到场景的坐标系变换,具有非常高的复杂度.文中提出了一种基于能够表明物体几何构造的直线段特征的人造物体识别方法,将假设验证法中对于全局坐标系变换的... 传统的用假设验证法进行三维物体识别的方法需要通过一组非线性方程组求解从模型到场景的坐标系变换,具有非常高的复杂度.文中提出了一种基于能够表明物体几何构造的直线段特征的人造物体识别方法,将假设验证法中对于全局坐标系变换的求解分散在各个平面单应性变换的求解中,降低了求解的复杂度.该方法首先利用几何不变量预匹配特征点,进而假设并求出场景和模型平面之间的单应矩阵,随后通过模型与场景之间直线段特征匹配的结果进行验证.实验证明,该方法能够快速准确地识别含有较多共面直线段特征的人造物体. 展开更多
关键词 人造物体识别 直线段特征 假设验证法 平面单应性 特征匹配
下载PDF
多视图的三维景物中平表面重建 被引量:1
6
作者 李静 杨宜民 蔡述庭 《智能系统学报》 CSCD 北大核心 2014年第4期454-460,共7页
针对使用传统的三维景物重建方法用于三维景物中平表面重建而出现的精度低等问题,提出了2种基于多视图的三维景物中平表面重建模型:最小化反投影误差的平表面重建模型和最小化转移误差的平表面重建模型。第1种模型利用反投影线应与空间... 针对使用传统的三维景物重建方法用于三维景物中平表面重建而出现的精度低等问题,提出了2种基于多视图的三维景物中平表面重建模型:最小化反投影误差的平表面重建模型和最小化转移误差的平表面重建模型。第1种模型利用反投影线应与空间平面相交且交于一点,从而将误差转移到空间平面上进行最小化反投影误差;第2种模型利用二维空间平面与二维图像平面之间的单应转移关系,从而将误差转移到空间平面上最小化转移误差。这2种模型都采用遗传算法进行优化求解,从而获得平表面重建结果。实际上,2种平表面重建方法的基本原理相同,只是计算复杂度不同。实验结果表明,2种平表面重建方法的精度基本一致,而平表面重建的精度大大提高。 展开更多
关键词 三维景物中平表面 重建 单应矩阵 约束条件 智能算法 遗传算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部