The plane metrology using a single uncalibrated image is studied in the paper, and three novel approaches are proposed. The first approach, namely key-line-based method, is an improvement over the widely used key-poin...The plane metrology using a single uncalibrated image is studied in the paper, and three novel approaches are proposed. The first approach, namely key-line-based method, is an improvement over the widely used key-point-based method, which uses line correspondences directly to compute homography between the world plane and its image so as to increase the computational accuracy. The second and third approaches are both based on a pair of vanishing points from two orthogonal sets of parallel lines in the space plane together with two unparallel referential distances, but the two methods deal with the problem in different ways. One is from the algebraic viewpoint which first maps the image points to an affine space via a transformation constructed from the vanishing points, and then computes the metric distance according to the relationship between the affine space and the Euclidean space, while the other is from the geometrical viewpoint based on the invariance of cross ratios. The second and third methods avoid the selection of control points and are widely applicable. In addition, a brief description on how to retrieve other geometrical entities on the space plane, such as distance from a point to a line, angle formed by two lines, etc., is also presented in the paper. Extensive experiments on simulated data as well as on real images show that the first and the second approaches are of better precision and stronger robustness than the key-point-based one and the third one, since these two approaches are fundamentally based on line information.展开更多
An easy calibration method was presented for in-situ measurement of displacement in the order of nanometer during micro-tensile test for thin films by using CCD camera as a sensing device. The calibration of the sensi...An easy calibration method was presented for in-situ measurement of displacement in the order of nanometer during micro-tensile test for thin films by using CCD camera as a sensing device. The calibration of the sensing camera in the system is a central element part to measure displacement in the order of nanometer using images taken with the camera. This was accomplished by modeling the optical projection through the camera lens and relative locations between the object and camera in 3D space. A set of known 3D points on a plane where the film is located on is projected to an image plane as input data. These points, known as a calibration points, are then used to estimate the projection parameters of the camera. In the measurement system of the micro-scale by CCD camera, the calibration data acquisition and one-to-one matching steps between the image and 3D planes need precise data extraction procedures and repetitive user's operation to calibrate the measuring devices. The lack of the robust image feature extraction and easy matching prevent the practical use of these methods. A data selection method was proposed to overcome these limitations and offer an easy and convenient calibration of a vision system that has the CCD camera and the 3D reference plane with calibration marks of circular type on the surface of the plane. The method minimizes the user's intervention such as the fine tuning of illumination system and provides an efficient calibration method of the vision system for in-situ axial displacement measurement of the micro-tensile materials.展开更多
文摘The plane metrology using a single uncalibrated image is studied in the paper, and three novel approaches are proposed. The first approach, namely key-line-based method, is an improvement over the widely used key-point-based method, which uses line correspondences directly to compute homography between the world plane and its image so as to increase the computational accuracy. The second and third approaches are both based on a pair of vanishing points from two orthogonal sets of parallel lines in the space plane together with two unparallel referential distances, but the two methods deal with the problem in different ways. One is from the algebraic viewpoint which first maps the image points to an affine space via a transformation constructed from the vanishing points, and then computes the metric distance according to the relationship between the affine space and the Euclidean space, while the other is from the geometrical viewpoint based on the invariance of cross ratios. The second and third methods avoid the selection of control points and are widely applicable. In addition, a brief description on how to retrieve other geometrical entities on the space plane, such as distance from a point to a line, angle formed by two lines, etc., is also presented in the paper. Extensive experiments on simulated data as well as on real images show that the first and the second approaches are of better precision and stronger robustness than the key-point-based one and the third one, since these two approaches are fundamentally based on line information.
基金supported by a grant (08-K1401-00610) from the Center of Nanoscale Mechatronics and Manufacturingone of the 21st Century Frontier Research Programs which are supported by the Ministry of Education,Science and Technology in Korea,Industry-University Partnership Laboratory Supporting Business"New Professor Support Program from Seoul National University of Technology"
文摘An easy calibration method was presented for in-situ measurement of displacement in the order of nanometer during micro-tensile test for thin films by using CCD camera as a sensing device. The calibration of the sensing camera in the system is a central element part to measure displacement in the order of nanometer using images taken with the camera. This was accomplished by modeling the optical projection through the camera lens and relative locations between the object and camera in 3D space. A set of known 3D points on a plane where the film is located on is projected to an image plane as input data. These points, known as a calibration points, are then used to estimate the projection parameters of the camera. In the measurement system of the micro-scale by CCD camera, the calibration data acquisition and one-to-one matching steps between the image and 3D planes need precise data extraction procedures and repetitive user's operation to calibrate the measuring devices. The lack of the robust image feature extraction and easy matching prevent the practical use of these methods. A data selection method was proposed to overcome these limitations and offer an easy and convenient calibration of a vision system that has the CCD camera and the 3D reference plane with calibration marks of circular type on the surface of the plane. The method minimizes the user's intervention such as the fine tuning of illumination system and provides an efficient calibration method of the vision system for in-situ axial displacement measurement of the micro-tensile materials.