A kind of novel multi-frequency monopole antenna with sector-nested fractal is proposed and designed, which is nested with a series of similar circular sector elements. By means of the trapeziform ground plane with th...A kind of novel multi-frequency monopole antenna with sector-nested fractal is proposed and designed, which is nested with a series of similar circular sector elements. By means of the trapeziform ground plane with the tapered CPW (coplanar waveguide) feeder in the middle, the antenna’s radiation performance is greatly improved. The antennas can synchronously operate in three frequencies, covering the working frequency bands of WLAN/WiMAX, 2.44 GHz/3.5 GHz/5.2 GHz - 5.8 GHz. The pattern and impedance measurements of antenna show a good performance over the WLAN/WiMAX band;it possesses a near omni-directional characteristic and good radiation efficiency. Moreover, the antenna is miniature and its design idea can be easily applied into other types of nested structure, the features of which make the proposed antenna have a promising application in other fields.展开更多
A new photonic bandgap (PBG) cover for a patch antenna with a photonic bandgap substrate is introduced. The plane wave expansion method and the FDTD method were used to calculate such an antenna system. Numerical re-s...A new photonic bandgap (PBG) cover for a patch antenna with a photonic bandgap substrate is introduced. The plane wave expansion method and the FDTD method were used to calculate such an antenna system. Numerical re-sults for the input return loss, radiation pattern, surface wave, and the directivity of the antennas are presented. A com-parison between the conventional patch antenna and the new PBG antenna is given. It is shown that the new PBG cover is very efficient for improving the radiation directivity. The physical reasons for the improvement are also given.展开更多
This study presents a new, simple method for reducing the back-lobe radiation of a microstrip antenna (MSA) by a partially removed ground plane of the antenna. The effect of the partial ground plane removal in differe...This study presents a new, simple method for reducing the back-lobe radiation of a microstrip antenna (MSA) by a partially removed ground plane of the antenna. The effect of the partial ground plane removal in different configurations on the radiation characteristics of a MSA are investigated numerically. The partial ground plane removal reduces the backlobe radiation of the MSA by suppressing the surface wave diffraction from the edges of the antenna ground plane. For further improving the front-to-back (F/B) ratio of the MSA, a new soft-surface configuration consisting of an array of stand-up split ring resonators (SRRs) are placed on a bare dielectric substrate near the two ground plane edges. Compared to the F/B ratio of a conventional MSA with a full ground plane of the same size, an improved F/B ratio of 9.7 dB has been achieved experimentally for our proposed MSA.展开更多
This article presents a novel modified chuck wagon dinner bell shaped millimeter wave(mm-wave)antenna at 28 GHz.The proposed design has ultra-thin Rogers 5880 substrate with relative permittivity of 2.2.The design con...This article presents a novel modified chuck wagon dinner bell shaped millimeter wave(mm-wave)antenna at 28 GHz.The proposed design has ultra-thin Rogers 5880 substrate with relative permittivity of 2.2.The design consists of T shaped resonating elements and two open ended side stubs.The desired 28 GHz frequency response is achieved by careful parametric modeling of the proposed structure.The maximum achieved single element gain at the desired resonance frequency is 3.45 dBi.The efficiency of the proposed design over the operating band is more than 88%.The impedance bandwidth achieved for−10 dB reference value is nearly 2.9 GHz.The proposed antenna is transformed into four element linear array which increases the gain up to 10.5 dBi.The fabricated prototype is tested for the measured results.It is observed that measured results closely match the simulated results.By considering its simple structure and focused radiation patterns,the proposed design is well suited for IoT(Internet of Things),mmWave microwave sensing,5G and future RF(Radio Frequency)frontends.展开更多
以基于极化平面的波达角(Direction of Arrival,DOA)估计算法为基础,针对近地面天线受地面反射波影响从而极大地影响DOA估计的准确性问题,对如何去除地面反射波的影响进行深入研究.分别采用理想地面近似法、反射系数法和阵列抑制算法进...以基于极化平面的波达角(Direction of Arrival,DOA)估计算法为基础,针对近地面天线受地面反射波影响从而极大地影响DOA估计的准确性问题,对如何去除地面反射波的影响进行深入研究.分别采用理想地面近似法、反射系数法和阵列抑制算法进行仿真试验,对比和分析这三种算法的优缺点,以及各自的适用性.理论分析和仿真试验表明:理想地面近似算法在实际地面参数与理想导电平面相近时,具有准确的计算结果,但在其他情况下计算结果与真实值误差很大;反射系数法通过地面的电导率σ、相对介电常数εr以及入射波的极角θ分别求出地面的水平反射系数和垂直反射系数,从而准确估算出来波方向,但由于该方法需要预先知道地面参数,故其应用场景受到了一定的限制;阵列抑制算法巧妙地利用地面反射波和直达波在相位延迟和入射角方面的关系,通过移相操作,生成抑制反射波的新数据,再对其进行处理,准确计算出DOA.通过比较分析可以得出,阵列抑制算法可用于任何类型的实际地面,且无需知道实际地面参数,同时该算法具有很好的准确性,因此其应用场景不受限制,具有很好的理论研究和实际应用价值.展开更多
The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is litt...The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic form- ing. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different ten- sioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures,materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.展开更多
文摘A kind of novel multi-frequency monopole antenna with sector-nested fractal is proposed and designed, which is nested with a series of similar circular sector elements. By means of the trapeziform ground plane with the tapered CPW (coplanar waveguide) feeder in the middle, the antenna’s radiation performance is greatly improved. The antennas can synchronously operate in three frequencies, covering the working frequency bands of WLAN/WiMAX, 2.44 GHz/3.5 GHz/5.2 GHz - 5.8 GHz. The pattern and impedance measurements of antenna show a good performance over the WLAN/WiMAX band;it possesses a near omni-directional characteristic and good radiation efficiency. Moreover, the antenna is miniature and its design idea can be easily applied into other types of nested structure, the features of which make the proposed antenna have a promising application in other fields.
文摘A new photonic bandgap (PBG) cover for a patch antenna with a photonic bandgap substrate is introduced. The plane wave expansion method and the FDTD method were used to calculate such an antenna system. Numerical re-sults for the input return loss, radiation pattern, surface wave, and the directivity of the antennas are presented. A com-parison between the conventional patch antenna and the new PBG antenna is given. It is shown that the new PBG cover is very efficient for improving the radiation directivity. The physical reasons for the improvement are also given.
文摘This study presents a new, simple method for reducing the back-lobe radiation of a microstrip antenna (MSA) by a partially removed ground plane of the antenna. The effect of the partial ground plane removal in different configurations on the radiation characteristics of a MSA are investigated numerically. The partial ground plane removal reduces the backlobe radiation of the MSA by suppressing the surface wave diffraction from the edges of the antenna ground plane. For further improving the front-to-back (F/B) ratio of the MSA, a new soft-surface configuration consisting of an array of stand-up split ring resonators (SRRs) are placed on a bare dielectric substrate near the two ground plane edges. Compared to the F/B ratio of a conventional MSA with a full ground plane of the same size, an improved F/B ratio of 9.7 dB has been achieved experimentally for our proposed MSA.
文摘This article presents a novel modified chuck wagon dinner bell shaped millimeter wave(mm-wave)antenna at 28 GHz.The proposed design has ultra-thin Rogers 5880 substrate with relative permittivity of 2.2.The design consists of T shaped resonating elements and two open ended side stubs.The desired 28 GHz frequency response is achieved by careful parametric modeling of the proposed structure.The maximum achieved single element gain at the desired resonance frequency is 3.45 dBi.The efficiency of the proposed design over the operating band is more than 88%.The impedance bandwidth achieved for−10 dB reference value is nearly 2.9 GHz.The proposed antenna is transformed into four element linear array which increases the gain up to 10.5 dBi.The fabricated prototype is tested for the measured results.It is observed that measured results closely match the simulated results.By considering its simple structure and focused radiation patterns,the proposed design is well suited for IoT(Internet of Things),mmWave microwave sensing,5G and future RF(Radio Frequency)frontends.
文摘以基于极化平面的波达角(Direction of Arrival,DOA)估计算法为基础,针对近地面天线受地面反射波影响从而极大地影响DOA估计的准确性问题,对如何去除地面反射波的影响进行深入研究.分别采用理想地面近似法、反射系数法和阵列抑制算法进行仿真试验,对比和分析这三种算法的优缺点,以及各自的适用性.理论分析和仿真试验表明:理想地面近似算法在实际地面参数与理想导电平面相近时,具有准确的计算结果,但在其他情况下计算结果与真实值误差很大;反射系数法通过地面的电导率σ、相对介电常数εr以及入射波的极角θ分别求出地面的水平反射系数和垂直反射系数,从而准确估算出来波方向,但由于该方法需要预先知道地面参数,故其应用场景受到了一定的限制;阵列抑制算法巧妙地利用地面反射波和直达波在相位延迟和入射角方面的关系,通过移相操作,生成抑制反射波的新数据,再对其进行处理,准确计算出DOA.通过比较分析可以得出,阵列抑制算法可用于任何类型的实际地面,且无需知道实际地面参数,同时该算法具有很好的准确性,因此其应用场景不受限制,具有很好的理论研究和实际应用价值.
基金Supported by Research Fund of Institute of Spacecraft System Engineering,China Academy of Space Technology,China(Grant No.ZTBYY-7)
文摘The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic form- ing. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different ten- sioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures,materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.