A fabrication technology of GaAs planar Schottky varactor diode (PSVD) is successfully developed and used to design and manufacture CaAs-based monolithic frequency multiplication based on 23-section nonlinear transm...A fabrication technology of GaAs planar Schottky varactor diode (PSVD) is successfully developed and used to design and manufacture CaAs-based monolithic frequency multiplication based on 23-section nonlinear transmission lines (NLTLs) consisting of a coplanar waveguide transmission line and periodically distributed PSVDs. The throughout design and optimization procedure of 23-section monolithic NLTLs for frequency multiplication in the k-band range is based on a large signal equivalent model of PSVD extracted from small-signal S-parameter measurements. This paper reports that the distributed SPVD exhibits a capacitance ratio of 5.4, a normalized capacitance of 0.86 fF/μm2 and a breakdown voltage in excess of 22 V. The integrated 23-section NLTLs fed by 20-dBm input power demonstrates a 26-GHz peak second harmonic output power of 14-dBm with 25.3% conversion efficiency in the second harmonic output frequency range of 6 GHz-26 GHz.展开更多
A bandwidth microwave second harmonic generator is successfully designed using composite right/left-handed non- linear transmission lines (CRLH NLTLs) in a GaAs monolithic microwave integrated circuit (MMIC) techn...A bandwidth microwave second harmonic generator is successfully designed using composite right/left-handed non- linear transmission lines (CRLH NLTLs) in a GaAs monolithic microwave integrated circuit (MMIC) technology. The structure parameters of CRLH NLTLs, e.g. host transmission line, rectangular spiral inductor, and nonlinear capacitor, have a great impact on the second harmonic performance enhancement in terms of second harmonic frequency, output power, and conversion efficiency. It has been experimentally demonstrated that the second harmonic frequency is deter- mined by the anomalous dispersion of CRLH NLTLs and can be significantly improved by effectively adjusting these structure parameters. A good agreement between the measured and simulated second harmonic performances of Ka-band CRLH NLTLs frequency multipliers is successfully achieved, which further validates the design approach of frequency multipliers on CRLH NLTLs and indicates the potentials of CRLH NLTLs in terms of the generation of microwave and millimeter-wave signal source.展开更多
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 60806024)the Fundamental Research Funds for Central Universities, China (Grant No. XDJK2009C020)the Singapore–China Joint Research Project (Grant No. 2009DFA12130)
文摘A fabrication technology of GaAs planar Schottky varactor diode (PSVD) is successfully developed and used to design and manufacture CaAs-based monolithic frequency multiplication based on 23-section nonlinear transmission lines (NLTLs) consisting of a coplanar waveguide transmission line and periodically distributed PSVDs. The throughout design and optimization procedure of 23-section monolithic NLTLs for frequency multiplication in the k-band range is based on a large signal equivalent model of PSVD extracted from small-signal S-parameter measurements. This paper reports that the distributed SPVD exhibits a capacitance ratio of 5.4, a normalized capacitance of 0.86 fF/μm2 and a breakdown voltage in excess of 22 V. The integrated 23-section NLTLs fed by 20-dBm input power demonstrates a 26-GHz peak second harmonic output power of 14-dBm with 25.3% conversion efficiency in the second harmonic output frequency range of 6 GHz-26 GHz.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61401373)the Research Fund for the Doctoral Program of Southwest University,China(Grant No.SWU111030)
文摘A bandwidth microwave second harmonic generator is successfully designed using composite right/left-handed non- linear transmission lines (CRLH NLTLs) in a GaAs monolithic microwave integrated circuit (MMIC) technology. The structure parameters of CRLH NLTLs, e.g. host transmission line, rectangular spiral inductor, and nonlinear capacitor, have a great impact on the second harmonic performance enhancement in terms of second harmonic frequency, output power, and conversion efficiency. It has been experimentally demonstrated that the second harmonic frequency is deter- mined by the anomalous dispersion of CRLH NLTLs and can be significantly improved by effectively adjusting these structure parameters. A good agreement between the measured and simulated second harmonic performances of Ka-band CRLH NLTLs frequency multipliers is successfully achieved, which further validates the design approach of frequency multipliers on CRLH NLTLs and indicates the potentials of CRLH NLTLs in terms of the generation of microwave and millimeter-wave signal source.