In order to improve the data throughput of the advanced encryption standard (AES) IP core while reducing the hardware resource consumption and finally achieving a tradeoff between speed and area, a mixed pipeline ar...In order to improve the data throughput of the advanced encryption standard (AES) IP core while reducing the hardware resource consumption and finally achieving a tradeoff between speed and area, a mixed pipeline architecture and reconfigurable technology for the design and implementation of the AES IP core is proposed. The encryption and decryption processes of the AES algorithm are achieved in the same process within the mixed pipeline structure. According to the finite field characterizations, the Sbox in the AES algorithm is optimized. ShiftRow and MixColumn, which are the main components in AES round transformation, are optimized with the reconfigurable technology. The design is implemented on the Xilinx Virtex2p xc2vp20-7 field programmable gate array (FPGA) device. It can achieve a data throughput above 2.58 Gbit/s, and it only requires 3 233 slices. Compared with other related designs of AES IP cores on the same device, the proposed design can achieve a tradeoff between speed and area, and obtain satisfactory results in both data throughput and hardware resource consumption.展开更多
The studies of the rare earth elements (RE) in low carbon steels suggest that the RE inhibits the ferrite transformation, which is the same effect as Mo alloying in pipeline steels. The purpose of this work is to disc...The studies of the rare earth elements (RE) in low carbon steels suggest that the RE inhibits the ferrite transformation, which is the same effect as Mo alloying in pipeline steels. The purpose of this work is to discuss the relationships between the RE microalloying and the microstructure in pipeline steels. The X80 pipeline steels with different RE and Mo additions have been produced by vacuum induction furnace. The Gleeble-2000 thermal simulator, optical microscopy, and scanning electron microscopy with EBSD have been used. The continuous cooling transformation (CCT) curve was obtained and analyzed, combined with the study of microstructure. The results indicate that the microstructure of thermal simulator test metal is characteristic of quasi-polygonal ferrite and bainite, and trace RE could significantly inhibit the transformation of quasi-polygonal ferrite. The 0.0040wt% content of RE plays the same role as 0.1 wt% content of Mo alloying in pipeline steels. What’s more, the fine bainite grained structure is obtained with RE microalloying. Theoretically RE could be employed in pipeline steels as microalloying, and a partial substitution of Mo by RE is possible.展开更多
Acicular ferrite microstructure was achieved for an ultralow carbon pipeline steel through the improved thermome chanical control process (TMCP), which was based on the transformation process of deformed austenite of ...Acicular ferrite microstructure was achieved for an ultralow carbon pipeline steel through the improved thermome chanical control process (TMCP), which was based on the transformation process of deformed austenite of steel. Compared with commercial pipeline steels, the experimental ultralow carbon pipeline steel possessed the satisfied strength and toughness behaviors under the current improved TMCP, although it contained only approximately 0.025% C, vvhich should mainly be attributed to the microstructural characteristics of acicular ferrite.展开更多
文摘In order to improve the data throughput of the advanced encryption standard (AES) IP core while reducing the hardware resource consumption and finally achieving a tradeoff between speed and area, a mixed pipeline architecture and reconfigurable technology for the design and implementation of the AES IP core is proposed. The encryption and decryption processes of the AES algorithm are achieved in the same process within the mixed pipeline structure. According to the finite field characterizations, the Sbox in the AES algorithm is optimized. ShiftRow and MixColumn, which are the main components in AES round transformation, are optimized with the reconfigurable technology. The design is implemented on the Xilinx Virtex2p xc2vp20-7 field programmable gate array (FPGA) device. It can achieve a data throughput above 2.58 Gbit/s, and it only requires 3 233 slices. Compared with other related designs of AES IP cores on the same device, the proposed design can achieve a tradeoff between speed and area, and obtain satisfactory results in both data throughput and hardware resource consumption.
基金Key Science and Technology Program of Chinese Ministry of Education (109048)Special Foundation for Basic Scientific Research of Central Colleges (N090402017)
文摘The studies of the rare earth elements (RE) in low carbon steels suggest that the RE inhibits the ferrite transformation, which is the same effect as Mo alloying in pipeline steels. The purpose of this work is to discuss the relationships between the RE microalloying and the microstructure in pipeline steels. The X80 pipeline steels with different RE and Mo additions have been produced by vacuum induction furnace. The Gleeble-2000 thermal simulator, optical microscopy, and scanning electron microscopy with EBSD have been used. The continuous cooling transformation (CCT) curve was obtained and analyzed, combined with the study of microstructure. The results indicate that the microstructure of thermal simulator test metal is characteristic of quasi-polygonal ferrite and bainite, and trace RE could significantly inhibit the transformation of quasi-polygonal ferrite. The 0.0040wt% content of RE plays the same role as 0.1 wt% content of Mo alloying in pipeline steels. What’s more, the fine bainite grained structure is obtained with RE microalloying. Theoretically RE could be employed in pipeline steels as microalloying, and a partial substitution of Mo by RE is possible.
基金The present work was financially supported by a China National‘973’Project No.G1998061511the Natural Science Fund of Hebei Province No.501205.
文摘Acicular ferrite microstructure was achieved for an ultralow carbon pipeline steel through the improved thermome chanical control process (TMCP), which was based on the transformation process of deformed austenite of steel. Compared with commercial pipeline steels, the experimental ultralow carbon pipeline steel possessed the satisfied strength and toughness behaviors under the current improved TMCP, although it contained only approximately 0.025% C, vvhich should mainly be attributed to the microstructural characteristics of acicular ferrite.