The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pi...The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pipe subjected to the basement excitation at the left end is named as the active pipe,while the pipe without excitation is called the passive pipe.The clips between the two pipes are the bridge for the vibration energy.The adjacent natural frequencies will enhance the vibration coupling.The governing equation of the coupled system is deduced by the generalized Hamilton principle,and is discretized to the modal space.The modal correction is used during the discretization.The investigation on the natural characters indicates that the adjacent natural frequencies can be adjusted by the stiffness of the two clips and bracket.The harmonic balance method(HBM)is used to study the responses in the adjacent natural frequency region.The results show that the vibration energy transmits from the active pipe to the passive pipe swimmingly via the clips together with a flexible bracket,while the locations of them are not node points.The adjacent natural frequencies may arouse wide resonance curves with two peaks for both pipes.The stiffness of the clip and bracket can release the vibration coupling.It is suggested that the stiffness of the clip on the passive pipe should be weak and the bracket should be strong enough.In this way,the vibration energy is reflected by the almost rigid bracket,and is hard to transfer to the passive pipe via a soft clip.The best choice is to set the clips at the pipe node points.The current work gives some suggestions for weakening the coupled vibration during the dynamic design of a coupled hydraulic pipe system.展开更多
Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functio...Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid.展开更多
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid...Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.展开更多
The nonlinear dynamic behaviors of viscoelastic axially functionally graded material(AFG)pipes conveying pulsating internal flow are very complex.And the dynamic behavior will induce the failure of the pipes,and resea...The nonlinear dynamic behaviors of viscoelastic axially functionally graded material(AFG)pipes conveying pulsating internal flow are very complex.And the dynamic behavior will induce the failure of the pipes,and research of vibration and stability of pipes becomes a major concern.Considering that the elastic modulus,density,and coefficient of viscoelastic damping of the pipe material vary along the axial direction,the transverse vibration equation of the viscoelastic AFG pipe conveying pulsating fluid is established based on the Euler-Bernoulli beam theory.The generalized integral transform technique(GITT)is used to transform the governing fourth-order partial differential equation into a nonlinear system of fourth-order ordinary differential equations in time.The time domain diagram,phase portraits,Poincarémap and power spectra diagram at different dimensionless pulsation frequencies,are discussed in detail,showing the characteristics of chaotic,periodic,and quasi-periodic motion.The results show that the distributions of the elastic modulus,density,and coefficient of viscoelastic damping have significant effects on the nonlinear dynamic behavior of the viscoelastic AFG pipes.With the increase of the material property coefficient k,the transition between chaotic,periodic,and quasi-periodic motion occurs,especially in the high-frequency region of the flow pulsation.展开更多
Based on the Euler-Bernoulli beam theory and Kelvin-Voigt model,a nonlinear model for the transverse vibration of a pipe under the combined action of base motion and pulsating internal flow is established.The governin...Based on the Euler-Bernoulli beam theory and Kelvin-Voigt model,a nonlinear model for the transverse vibration of a pipe under the combined action of base motion and pulsating internal flow is established.The governing partial differential equation is transformed into a nonlinear system of fourth-order ordinary differential equations by using the generalized integral transform technique(GITT).The effects of the combined excitation of base motion and pulsating internal flow on the nonlinear dynamic behavior of the pipe are investigated using a bifurcation diagram,phase trajectory diagram,power spectrum diagram,time-domain diagram,and Poincare map.The results show that the base excitation amplitude and frequency significantly affect the dynamic behavior of the pipe system.Some new resonance phenomena can be observed,such as the period-1 motion under the base excitation or the pulsating internal flow alone becomes the multi-periodic motion,quasi-periodic motion or even chaotic motion due to the combined excitation action.展开更多
Usually,the stability analysis of pipes with pulsating flow velocities is for rigidly constrained pipes or cantilevered pipes.In this paper,the effects of elastic constraints on pipe stability and nonlinear responses ...Usually,the stability analysis of pipes with pulsating flow velocities is for rigidly constrained pipes or cantilevered pipes.In this paper,the effects of elastic constraints on pipe stability and nonlinear responses under pulsating velocities are investigated.A mechanical model of a fluid-conveying pipe under the constraints of elastic clamps is established.A partial differentialintegral nonlinear equation governing the lateral vibration of the pipe is derived.The natural frequencies and mode functions of the pipe are obtained.Moreover,the stable boundary and nonlinear steady-state responses of the parametric vibration for the pipe are established approximately.Furthermore,the analytical solutions are verified numerically.The results of this work reveal some interesting conclusions.It is found that the elastic constraint stiffness in the direction perpendicular to the axis of the pipe does not affect the critical flow velocity of the pipe.However,the constraint stiffness has a significant effect on the instability boundary of the pipe with pulsating flow velocities.Interestingly,an increase in the stiffness of the constraint increases the instable region of the pipe under parametric excitation.However,when the constraint stiffness is increased,the steady-state response amplitude of the nonlinear vibration for the pipe is significantly reduced.Therefore,the effects of the constraint stiffness on the instable region and vibration responses of the fluid-conveying pipe are different when the flow velocity is pulsating.展开更多
用于循环流化床(circulating fluidized bed boiler,CFB)锅炉掺烧是目前利用煤泥的最佳途径之一。目前循环流化床锅炉掺烧主要有煤泥管道输送入炉掺烧和煤泥干燥后进入给煤系统入炉掺烧两种典型方式,对这两种方式进行简单介绍和相关技...用于循环流化床(circulating fluidized bed boiler,CFB)锅炉掺烧是目前利用煤泥的最佳途径之一。目前循环流化床锅炉掺烧主要有煤泥管道输送入炉掺烧和煤泥干燥后进入给煤系统入炉掺烧两种典型方式,对这两种方式进行简单介绍和相关技术分析,并结合实际案例以热平衡的方法进行了经济性比较。最终结论是两种方式在技术上各有优势,但煤泥管道输送系统综合经济性优于煤泥干燥系统。展开更多
In this work,the nonlinear behaviors of soft cantilevered pipes containing internal fluid flow are studied based on a geometrically exact model,with particular focus on the mechanism of large-amplitude oscillations of...In this work,the nonlinear behaviors of soft cantilevered pipes containing internal fluid flow are studied based on a geometrically exact model,with particular focus on the mechanism of large-amplitude oscillations of the pipe under gravity.Four key parameters,including the flow velocity,the mass ratio,the gravity parameter,and the inclination angle between the pipe length and the gravity direction,are considered to affect the static and dynamic behaviors of the soft pipe.The stability analyses show that,provided that the inclination angle is not equal to π,the soft pipe is stable at a low flow velocity and becomes unstable via flutter once the flow velocity is beyond a critical value.As the inclination angle is equal to π,the pipe experiences,in turn,buckling instability,regaining stability,and flutter instability with the increase in the flow velocity.Interestingly,the stability of the pipe can be either enhanced or weakened by varying the gravity parameter,mainly dependent on the value of the inclination angle.In the nonlinear dynamic analysis,it is demonstrated that the post-flutter amplitude of the soft pipe can be extremely large in the form of limit-cycle oscillations.Besides,the oscillating shapes for various inclination angles are provided to display interesting dynamical behaviors of the inclined soft pipe conveying fluid.展开更多
This paper aims to solve the resonance failure probability and develop an effective method to estimate the effects of variables and failure modes on failure probability of axially functionally graded material(FGM)pipe...This paper aims to solve the resonance failure probability and develop an effective method to estimate the effects of variables and failure modes on failure probability of axially functionally graded material(FGM)pipe conveying fluid.Correspondingly,the natural frequency of axially FGM pipes conveying fluid is calculated using the differential quadrature method(DQM).A variable sensitivity analysis(VSA)is introduced to measure the effect of each random variable,and a mode sensitivity analysis(MSA)is introduced to acquire the importance ranking of failure modes.Then,an active learning Kriging(ALK)method is established to calculate the resonance failure probability and sensitivity indices,which greatly improves the application of resonance reliability analysis for pipelines in engineering practice.Based on the resonance reliability analysis method,the effects of fluid velocity,volume fraction and fluid density of axially FGM pipe conveying fluid on resonance reliability are analyzed.The results demonstrate that the proposed method has great performance in the anti-resonance analysis of pipes conveying fluid.展开更多
基金Project supported by the National Natural Science Foundation of China(No.12002195)the Pujiang Project of Shanghai Science and Technology Commission of China(No.20PJ1404000)。
文摘The coupling vibration of a hydraulic pipe system consisting of two pipes is studied.The pipes are installed in parallel and fixed at their ends,and are restrained by clips to one bracket at their middle points.The pipe subjected to the basement excitation at the left end is named as the active pipe,while the pipe without excitation is called the passive pipe.The clips between the two pipes are the bridge for the vibration energy.The adjacent natural frequencies will enhance the vibration coupling.The governing equation of the coupled system is deduced by the generalized Hamilton principle,and is discretized to the modal space.The modal correction is used during the discretization.The investigation on the natural characters indicates that the adjacent natural frequencies can be adjusted by the stiffness of the two clips and bracket.The harmonic balance method(HBM)is used to study the responses in the adjacent natural frequency region.The results show that the vibration energy transmits from the active pipe to the passive pipe swimmingly via the clips together with a flexible bracket,while the locations of them are not node points.The adjacent natural frequencies may arouse wide resonance curves with two peaks for both pipes.The stiffness of the clip and bracket can release the vibration coupling.It is suggested that the stiffness of the clip on the passive pipe should be weak and the bracket should be strong enough.In this way,the vibration energy is reflected by the almost rigid bracket,and is hard to transfer to the passive pipe via a soft clip.The best choice is to set the clips at the pipe node points.The current work gives some suggestions for weakening the coupled vibration during the dynamic design of a coupled hydraulic pipe system.
基金supported by the National Science Funds for Distinguished Young Scholars (Grant No.12025204)the Shanghai Municipal Education Commission (Grant No.2019-01-07-00-09-E00018).
基金Project supported by the National Natural Science Foundation of China (Nos.12002195 and 12372015)the National Science Fund for Distinguished Young Scholars of China (No.12025204)the Program of Shanghai Municipal Education Commission of China (No.2019-01-07-00-09-E00018)。
文摘Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid.
基金Project supported by the National Natural Science Foundation of China (Nos.12072119,12325201,and 52205594)the China National Postdoctoral Program for Innovative Talents (No.BX20220118)。
文摘Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.
基金supported by the National Natural Science Foundation of China(52171288,51890914)the Key Research and Development Program of Shandong Province(Major Innovation Project)(2022CXGC020405)+3 种基金the National Ministry of Industry and Information Technology Innovation Special Project-Engineering Demonstration Application of Subsea Oil and Gas Production System-Subject 4“Research on Subsea Christmas Tree and Wellhead Offshore Testing Technology”[MC-201901-S01-04]the Fundamental Research Funds for the Central Universities(20CX02410A)the Development Fund of Shandong Key Laboratory of Oil&Gas Storage and Transportation SafetyCNPq,CAPES and FAPERJ of Brazil。
文摘The nonlinear dynamic behaviors of viscoelastic axially functionally graded material(AFG)pipes conveying pulsating internal flow are very complex.And the dynamic behavior will induce the failure of the pipes,and research of vibration and stability of pipes becomes a major concern.Considering that the elastic modulus,density,and coefficient of viscoelastic damping of the pipe material vary along the axial direction,the transverse vibration equation of the viscoelastic AFG pipe conveying pulsating fluid is established based on the Euler-Bernoulli beam theory.The generalized integral transform technique(GITT)is used to transform the governing fourth-order partial differential equation into a nonlinear system of fourth-order ordinary differential equations in time.The time domain diagram,phase portraits,Poincarémap and power spectra diagram at different dimensionless pulsation frequencies,are discussed in detail,showing the characteristics of chaotic,periodic,and quasi-periodic motion.The results show that the distributions of the elastic modulus,density,and coefficient of viscoelastic damping have significant effects on the nonlinear dynamic behavior of the viscoelastic AFG pipes.With the increase of the material property coefficient k,the transition between chaotic,periodic,and quasi-periodic motion occurs,especially in the high-frequency region of the flow pulsation.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52171288,51890914)the Key Research and Development Program of Shandong Province(Major Innovation Project)(Grant No.2022CXGC020405)+1 种基金the National Ministry of Industry and Information Technology Innovation Special Project-Engineering Demonstration Application of Subsea Oil and Gas Production SystemSubject 4:Research on Subsea Christmas Tree and Wellhead Offshore Testing Technology(Grant No.MC-201901-S01-04)CNPq,CAPES and FAPERJ of Brazil。
文摘Based on the Euler-Bernoulli beam theory and Kelvin-Voigt model,a nonlinear model for the transverse vibration of a pipe under the combined action of base motion and pulsating internal flow is established.The governing partial differential equation is transformed into a nonlinear system of fourth-order ordinary differential equations by using the generalized integral transform technique(GITT).The effects of the combined excitation of base motion and pulsating internal flow on the nonlinear dynamic behavior of the pipe are investigated using a bifurcation diagram,phase trajectory diagram,power spectrum diagram,time-domain diagram,and Poincare map.The results show that the base excitation amplitude and frequency significantly affect the dynamic behavior of the pipe system.Some new resonance phenomena can be observed,such as the period-1 motion under the base excitation or the pulsating internal flow alone becomes the multi-periodic motion,quasi-periodic motion or even chaotic motion due to the combined excitation action.
基金the support of the National Science Fund for Distinguished Young Scholars(No.12025204)the Shanghai Municipal Education Commission(No.2019-01-07-00-09-E00018).
文摘Usually,the stability analysis of pipes with pulsating flow velocities is for rigidly constrained pipes or cantilevered pipes.In this paper,the effects of elastic constraints on pipe stability and nonlinear responses under pulsating velocities are investigated.A mechanical model of a fluid-conveying pipe under the constraints of elastic clamps is established.A partial differentialintegral nonlinear equation governing the lateral vibration of the pipe is derived.The natural frequencies and mode functions of the pipe are obtained.Moreover,the stable boundary and nonlinear steady-state responses of the parametric vibration for the pipe are established approximately.Furthermore,the analytical solutions are verified numerically.The results of this work reveal some interesting conclusions.It is found that the elastic constraint stiffness in the direction perpendicular to the axis of the pipe does not affect the critical flow velocity of the pipe.However,the constraint stiffness has a significant effect on the instability boundary of the pipe with pulsating flow velocities.Interestingly,an increase in the stiffness of the constraint increases the instable region of the pipe under parametric excitation.However,when the constraint stiffness is increased,the steady-state response amplitude of the nonlinear vibration for the pipe is significantly reduced.Therefore,the effects of the constraint stiffness on the instable region and vibration responses of the fluid-conveying pipe are different when the flow velocity is pulsating.
文摘用于循环流化床(circulating fluidized bed boiler,CFB)锅炉掺烧是目前利用煤泥的最佳途径之一。目前循环流化床锅炉掺烧主要有煤泥管道输送入炉掺烧和煤泥干燥后进入给煤系统入炉掺烧两种典型方式,对这两种方式进行简单介绍和相关技术分析,并结合实际案例以热平衡的方法进行了经济性比较。最终结论是两种方式在技术上各有优势,但煤泥管道输送系统综合经济性优于煤泥干燥系统。
基金Project supported by the National Natural Science Foundation of China(Nos.11672115,11622216,and 11972167)。
文摘In this work,the nonlinear behaviors of soft cantilevered pipes containing internal fluid flow are studied based on a geometrically exact model,with particular focus on the mechanism of large-amplitude oscillations of the pipe under gravity.Four key parameters,including the flow velocity,the mass ratio,the gravity parameter,and the inclination angle between the pipe length and the gravity direction,are considered to affect the static and dynamic behaviors of the soft pipe.The stability analyses show that,provided that the inclination angle is not equal to π,the soft pipe is stable at a low flow velocity and becomes unstable via flutter once the flow velocity is beyond a critical value.As the inclination angle is equal to π,the pipe experiences,in turn,buckling instability,regaining stability,and flutter instability with the increase in the flow velocity.Interestingly,the stability of the pipe can be either enhanced or weakened by varying the gravity parameter,mainly dependent on the value of the inclination angle.In the nonlinear dynamic analysis,it is demonstrated that the post-flutter amplitude of the soft pipe can be extremely large in the form of limit-cycle oscillations.Besides,the oscillating shapes for various inclination angles are provided to display interesting dynamical behaviors of the inclined soft pipe conveying fluid.
基金The funding was provided by Laboratory Fund (Grant No.SYJJ200320).
文摘This paper aims to solve the resonance failure probability and develop an effective method to estimate the effects of variables and failure modes on failure probability of axially functionally graded material(FGM)pipe conveying fluid.Correspondingly,the natural frequency of axially FGM pipes conveying fluid is calculated using the differential quadrature method(DQM).A variable sensitivity analysis(VSA)is introduced to measure the effect of each random variable,and a mode sensitivity analysis(MSA)is introduced to acquire the importance ranking of failure modes.Then,an active learning Kriging(ALK)method is established to calculate the resonance failure probability and sensitivity indices,which greatly improves the application of resonance reliability analysis for pipelines in engineering practice.Based on the resonance reliability analysis method,the effects of fluid velocity,volume fraction and fluid density of axially FGM pipe conveying fluid on resonance reliability are analyzed.The results demonstrate that the proposed method has great performance in the anti-resonance analysis of pipes conveying fluid.