Monochamus alternatus is the primary carrier of pine wood nematodes,which pose a serious threat to Pinus spp.in many countries.Newly emerging M.alternatus adults feed on heathy host pines,while matured adults transfer...Monochamus alternatus is the primary carrier of pine wood nematodes,which pose a serious threat to Pinus spp.in many countries.Newly emerging M.alternatus adults feed on heathy host pines,while matured adults transfer to stressed host pines for mating and oviposition.Several odorant-binding proteins(OBPs)of M.alternatus have been proved to aid in the complex process of host location.To clarify the corresponding relations between OBPs and pine volatiles,more OBPs need to be studied.In this research,MaltOBP19 showed a specific expression in the antennae and mouthparts of M.alternatus,and it was marked in 4 types of antenna sensilla by immunolocalization.Fluorescence binding assays demonstrated the high binding affinity of MaltOBP19 with camphene and myrcene in vitro.In Y-tube olfactory experiments,M.alternatus adults were attracted by camphene and RNAi of OBP19 via microinjection significantly decreased their attraction index.Myrcene induced phobotaxis,but RNAi had no significant effect on this behavior.Further,we found that ingesting dsOBP19 produced by a bacteria-expressed system with a newly constructed vector could lead to the knockdown of MaltOBP19.These results suggest that MaltOBP19 may play a role in the process of host conversion via the recognition of camphene,which has been identified to be strongly released in stressed host pines.In addition,it is proved that knockdown of OBP can be achieved by oral administration of bacteria-expressed double-stranded RNA in M.alternatus adults,providing a new perspective in the control of M.alternatus.展开更多
Glyphosate is the herbicide most extensively used for site preparation and conifer release. It is a broadspectrum herbicide and therefore crop safety is a critical issue. This study assessed the early effects of 14 di...Glyphosate is the herbicide most extensively used for site preparation and conifer release. It is a broadspectrum herbicide and therefore crop safety is a critical issue. This study assessed the early effects of 14 different treatments, including no weed control, manual weed control, and 12 foliar-applied herbicide treatments at low,intermediate, high, and highest application rates and application timing on glyphosate phytotoxicity of containerized seedlings of Austrian pine(Pinus nigra J.F.Arnold.), Scots pine(P. sylvestris L.) and maritime pine(P.pinaster Aiton), conifer species widely used for afforestation and supplementary plantings in Turkish forestry. In general, Scots pine seedlings were tolerant to glyphosate compared to the other species. Glyphosate phytotoxicity varied significantly according to the time and rate of application. Seedlings were relatively tolerant to glyphosate in April whereas they were intolerant in May. The highest herbicide rate(1.2% v:v) was consistently phytotoxic to all species. Moreover, the effect of herbicide rate on seedling survival and growth varied significantly according to application date(i.e., application rate 9 date interaction). Seedlings appeared tolerant to glyphosate at low and intermediate rates(0.2, 0.4% v:v) between midspring and mid-summer, whereas they demonstrated significant sensitivity to the highest rate across all time periods. Glyphosate at the high rate(0.8% v:v) was particularly more phytotoxic when applied in May. Application of glyphosate at rates up to 0.8% could be recommended for weed control without significant pine damage in midspring when the needles presumably have a dense leaf epicuticular wax layer limiting herbicide penetration.Applications of 0.8 and 1.2% v:v are not recommended during May–June.展开更多
基金This study was supported and funded by the National Key Research and Development Program of China(2021YFD1400900)the National Natural Science Foundation of China(31971665).
文摘Monochamus alternatus is the primary carrier of pine wood nematodes,which pose a serious threat to Pinus spp.in many countries.Newly emerging M.alternatus adults feed on heathy host pines,while matured adults transfer to stressed host pines for mating and oviposition.Several odorant-binding proteins(OBPs)of M.alternatus have been proved to aid in the complex process of host location.To clarify the corresponding relations between OBPs and pine volatiles,more OBPs need to be studied.In this research,MaltOBP19 showed a specific expression in the antennae and mouthparts of M.alternatus,and it was marked in 4 types of antenna sensilla by immunolocalization.Fluorescence binding assays demonstrated the high binding affinity of MaltOBP19 with camphene and myrcene in vitro.In Y-tube olfactory experiments,M.alternatus adults were attracted by camphene and RNAi of OBP19 via microinjection significantly decreased their attraction index.Myrcene induced phobotaxis,but RNAi had no significant effect on this behavior.Further,we found that ingesting dsOBP19 produced by a bacteria-expressed system with a newly constructed vector could lead to the knockdown of MaltOBP19.These results suggest that MaltOBP19 may play a role in the process of host conversion via the recognition of camphene,which has been identified to be strongly released in stressed host pines.In addition,it is proved that knockdown of OBP can be achieved by oral administration of bacteria-expressed double-stranded RNA in M.alternatus adults,providing a new perspective in the control of M.alternatus.
基金funded by the Scientific Research Project Coordinator of Düzce University(Grant number BAP-2015.02.02.303)
文摘Glyphosate is the herbicide most extensively used for site preparation and conifer release. It is a broadspectrum herbicide and therefore crop safety is a critical issue. This study assessed the early effects of 14 different treatments, including no weed control, manual weed control, and 12 foliar-applied herbicide treatments at low,intermediate, high, and highest application rates and application timing on glyphosate phytotoxicity of containerized seedlings of Austrian pine(Pinus nigra J.F.Arnold.), Scots pine(P. sylvestris L.) and maritime pine(P.pinaster Aiton), conifer species widely used for afforestation and supplementary plantings in Turkish forestry. In general, Scots pine seedlings were tolerant to glyphosate compared to the other species. Glyphosate phytotoxicity varied significantly according to the time and rate of application. Seedlings were relatively tolerant to glyphosate in April whereas they were intolerant in May. The highest herbicide rate(1.2% v:v) was consistently phytotoxic to all species. Moreover, the effect of herbicide rate on seedling survival and growth varied significantly according to application date(i.e., application rate 9 date interaction). Seedlings appeared tolerant to glyphosate at low and intermediate rates(0.2, 0.4% v:v) between midspring and mid-summer, whereas they demonstrated significant sensitivity to the highest rate across all time periods. Glyphosate at the high rate(0.8% v:v) was particularly more phytotoxic when applied in May. Application of glyphosate at rates up to 0.8% could be recommended for weed control without significant pine damage in midspring when the needles presumably have a dense leaf epicuticular wax layer limiting herbicide penetration.Applications of 0.8 and 1.2% v:v are not recommended during May–June.