Based on the environment characteristics of the Beibu Gulf of South China Sea, a quasi-three-dimensional physical model is built. By coupling the bottom boundary layer with the two-dimensional tidal current field near...Based on the environment characteristics of the Beibu Gulf of South China Sea, a quasi-three-dimensional physical model is built. By coupling the bottom boundary layer with the two-dimensional tidal current field near the seabed surface, the quasi-three-dimensional hydrodynamic numerical simulation is carried out. The sand wave migration process is dealt with by coupling the hydrodynamic model with the sediment transport model. The computational results are shown to be in good agreement with the observed data, which indicates that the quasi-three-dimensional physical model can be used to simulate the migration process for small scale sand waves. Then, based on measured data, the evolution of the sand wave migration is investigated. An effective formula is developed to predict the migration rate, in which not only the effects of the environment but also the features of sand waves are considered.展开更多
In this paper, the numerical model of the net cage with the grid mooring system in waves is set up by the lumped mass method and rigid kinematics theory, and then the motion equations of floating system, net system, m...In this paper, the numerical model of the net cage with the grid mooring system in waves is set up by the lumped mass method and rigid kinematics theory, and then the motion equations of floating system, net system, mooring system, and floaters are solved by the Runge-Kutta fifth-order method. For the verification of the numerical model, a series of physical model tests have been carried out. According to the comparisons between the simulated and experimental results, it can be found that the simulated and experimental results agree well in each condition. Then, the effects of submerged depth of grid and direction of incident wave propagation on hydrodynamic behaviors of the net cage are analyzed. According to the simulated results, it can be found that with the increase of submerged depth of grid, the forces acting on mooring lines and bridle lines increase, while the forces on grid lines decrease; the horizontal motion amplitudes of floating collar decrease obviously, while the vertical motion amplitudes of floating collar change little. When the direction of incident wave propagation changes, forces on mooring lines and motion of net cage also change accordingly. When the propagation direction of incident wave changes from 0° to 45°, forces on the main ropes and bridle ropes increase, while the forces on the grid ropes decrease. With the increasing propagation direction of incident wave, the horizontal amplitude of the forces collar decreases, while the vertical amplitude of the floating collar has little variation.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11032007,40576046)
文摘Based on the environment characteristics of the Beibu Gulf of South China Sea, a quasi-three-dimensional physical model is built. By coupling the bottom boundary layer with the two-dimensional tidal current field near the seabed surface, the quasi-three-dimensional hydrodynamic numerical simulation is carried out. The sand wave migration process is dealt with by coupling the hydrodynamic model with the sediment transport model. The computational results are shown to be in good agreement with the observed data, which indicates that the quasi-three-dimensional physical model can be used to simulate the migration process for small scale sand waves. Then, based on measured data, the evolution of the sand wave migration is investigated. An effective formula is developed to predict the migration rate, in which not only the effects of the environment but also the features of sand waves are considered.
基金supported by the National Natural Science Foundation of China(Grant No.50809014)the National High Technology Research and Development Program of China(863 Program,Grant No.2006AA100301)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.200801411094)
文摘In this paper, the numerical model of the net cage with the grid mooring system in waves is set up by the lumped mass method and rigid kinematics theory, and then the motion equations of floating system, net system, mooring system, and floaters are solved by the Runge-Kutta fifth-order method. For the verification of the numerical model, a series of physical model tests have been carried out. According to the comparisons between the simulated and experimental results, it can be found that the simulated and experimental results agree well in each condition. Then, the effects of submerged depth of grid and direction of incident wave propagation on hydrodynamic behaviors of the net cage are analyzed. According to the simulated results, it can be found that with the increase of submerged depth of grid, the forces acting on mooring lines and bridle lines increase, while the forces on grid lines decrease; the horizontal motion amplitudes of floating collar decrease obviously, while the vertical motion amplitudes of floating collar change little. When the direction of incident wave propagation changes, forces on mooring lines and motion of net cage also change accordingly. When the propagation direction of incident wave changes from 0° to 45°, forces on the main ropes and bridle ropes increase, while the forces on the grid ropes decrease. With the increasing propagation direction of incident wave, the horizontal amplitude of the forces collar decreases, while the vertical amplitude of the floating collar has little variation.