The initial cell search plays an important role during the process of downlink synchronization establishment between the User Equipment(UE) and the base station. In particular, the uncertainty of the synchronization s...The initial cell search plays an important role during the process of downlink synchronization establishment between the User Equipment(UE) and the base station. In particular, the uncertainty of the synchronization signals on the frequency domain and the flexibility of frame structure configuration have brought great challenges to the initial cell search for the fifth-generation(5G) new radio(NR). To solve this problem, firstly, we analyze the physical layer frame structure of 5G NR systems. Then, by focusing on the knowledge of synchronization signals, the 5G NR cell search process is designed, and the primary synchronization signal(PSS) timing synchronization algorithm is proposed, including a 5G-based coarse synchronization algorithm and conjugate symmetry-based fine synchronization algorithm. Finally, the performance of the proposed cell search algorithm in 5G NR systems is verified through the combination of Digital Signal Processing(DSP) and personal computer(PC). And the MATLAB simulation proves that the proposed algorithm has better performance than the conventional cross-correlation algorithm when a certain frequency offset exists.展开更多
The huge performance enhancements of the organometal halide perovskite solar cells(OHPSCs) have appealed enormous attention within recent ten years. Although the rapid growth of the device power conversion efficiency(...The huge performance enhancements of the organometal halide perovskite solar cells(OHPSCs) have appealed enormous attention within recent ten years. Although the rapid growth of the device power conversion efficiency(PCE) has attained over 25%, the contamination of health-hazardous components still holds back its sustainable applications. To reduce the lead usage, many groups have tried chemical lead reduction solutions: substituting the lead by other group 14 metal elements to realize the low-lead OHPSCs. Unfortunately, neither the PCE nor the stability, low-lead OHPSCs all lag far behind the state-ofthe-art conventional lead-based OHPSCs. In this work, we present a physical lead reduction(PLR) concept by reducing the perovskite film thickness to restrict the perovskite hazard risk with minor scarification in device performances. Through the simulation of transfer matrix model, we theoretically demonstrated that by introducing the optical space layer, the device PCE could maintain 96% of the original maximum value while attenuating the perovskite film thickness to one-third. This means that the usage of lead can be reduced by $70% with PLR concept, which could have broad appeal as a new lead reduction strategy towards high performance OHPSCs.展开更多
基金partially the Chongqing Municipality’s Major Theme Project “R & D and Application of 5G terminal simulation equipment” (Grant No. Cstc2017zdcy-zdzx0030)
文摘The initial cell search plays an important role during the process of downlink synchronization establishment between the User Equipment(UE) and the base station. In particular, the uncertainty of the synchronization signals on the frequency domain and the flexibility of frame structure configuration have brought great challenges to the initial cell search for the fifth-generation(5G) new radio(NR). To solve this problem, firstly, we analyze the physical layer frame structure of 5G NR systems. Then, by focusing on the knowledge of synchronization signals, the 5G NR cell search process is designed, and the primary synchronization signal(PSS) timing synchronization algorithm is proposed, including a 5G-based coarse synchronization algorithm and conjugate symmetry-based fine synchronization algorithm. Finally, the performance of the proposed cell search algorithm in 5G NR systems is verified through the combination of Digital Signal Processing(DSP) and personal computer(PC). And the MATLAB simulation proves that the proposed algorithm has better performance than the conventional cross-correlation algorithm when a certain frequency offset exists.
基金supported by the National Basic Research Program of China (2015CB932203)the National Natural Science Foundation of China (91733301, 61722501, 61377025, 91433203, and 61604121)Postdoctoral Innovative Talents Support Project (8206200013)
文摘The huge performance enhancements of the organometal halide perovskite solar cells(OHPSCs) have appealed enormous attention within recent ten years. Although the rapid growth of the device power conversion efficiency(PCE) has attained over 25%, the contamination of health-hazardous components still holds back its sustainable applications. To reduce the lead usage, many groups have tried chemical lead reduction solutions: substituting the lead by other group 14 metal elements to realize the low-lead OHPSCs. Unfortunately, neither the PCE nor the stability, low-lead OHPSCs all lag far behind the state-ofthe-art conventional lead-based OHPSCs. In this work, we present a physical lead reduction(PLR) concept by reducing the perovskite film thickness to restrict the perovskite hazard risk with minor scarification in device performances. Through the simulation of transfer matrix model, we theoretically demonstrated that by introducing the optical space layer, the device PCE could maintain 96% of the original maximum value while attenuating the perovskite film thickness to one-third. This means that the usage of lead can be reduced by $70% with PLR concept, which could have broad appeal as a new lead reduction strategy towards high performance OHPSCs.