We applied under pot-culture conditions and the double-casing pot method to study the characteristics of photosynthetic gas exchange and chlorophyll fluorescence in the leaves of Physocarpus amurensis Maxim (PA) and...We applied under pot-culture conditions and the double-casing pot method to study the characteristics of photosynthetic gas exchange and chlorophyll fluorescence in the leaves of Physocarpus amurensis Maxim (PA) and Physocarpus opulifolius under flooding stress. Our results indicate a significantly higher flooding tolerance of P. opulifolius compared to P. amurensis. Especially in P. amurensis, the limitation of non-stomatal factors played a major role in the advanced stages of flooding stress, observed as a rapid increase of the intercellular C02 con- centration (Ci) and a decrease of the stomatal limitation value (Ls). The maximal PSII photochemical efficiencies (Fv/Fm) and actual photochemical efficiency (60PSU) in the leaves of P. opulifolius were extent of decrease during the than in P. amurensis. In significantly higher, and the flooding process was smaller addition, the non-chemical quenching (NPQ) in the leaves of P. opulifolius significandy increased from the 10th day under flooding stress, while the variation of NPQ in the leaves of P. amurensis was much smaller. This indicates that the leaves of P. opulifolius had not only higher PSII photochemical activity, but also improved tolerance to flooding stress, which may be caused by its ability to dissipate excess excitation energy by starting NPQ. At the 16th day under flooding stress, the PLABS significantly decreased with greater extent of decrease than Fv/Fm in the leaves of both Physocarpus, but the decreasing extent of PIABS in P. opulifolius was significantly smaller than in P. amurensis. In the 16th day under flooding stress, the fluorescence at J and I point (VJ and V1) in P. amurensis were significantly higher, and the extent of increase in VJ was greater than V1. However, the variations of VJ and V1 in the leaves of P. opulifolius were smaller, suggesting that the damage sites of flooding stress to PSII in the leaves of P. amurensis were mainly located in the electron transport process from QA at the PSII receptor side展开更多
Dynamic changes in flag leaf angle, anatomy, photosynthesis, chlorophyll content, population photosynthesis, and light transmission are investigated in three wheat cultivars: Xiaoyan 81 (Xy 81) in which flag leaf angl...Dynamic changes in flag leaf angle, anatomy, photosynthesis, chlorophyll content, population photosynthesis, and light transmission are investigated in three wheat cultivars: Xiaoyan 81 (Xy 81) in which flag leaf angle changes from erect to draped, Xiaoyan 41 (Xy 41) in which flag leaf angle changes from erect to half draped (middle type), and Xiaoyan 6 (Xy 6) in which the flag leaf remains erect from the flowering to the grain-filling stage. No obvious differences in leaf thickness, leaf area, mesophyll morphology, granal stacking, photosynthesis, or chlorophyll content are found among the three cultivars. It is of interest to find that the flag leaf angle of Xy 81 changes from erect to draped during the grain - filling stage, but there are no obvious changes in chlorophyll content or photosynthetic capacity during this period, indicating that changes in flag leaf angle do not result from senescence. Moreover, the study shows that levels of population photosynthesis and light transmission in Xy 81 are higher than in Xy 41 and Xy 6. Taken together, these results demonstrate that dynamic changes in Xy 81 flag leaf angle enhance population photosynthesis and thus may improve wheat yield.展开更多
基金supported by the National Natural Science Foundation of China(No.31500323)
文摘We applied under pot-culture conditions and the double-casing pot method to study the characteristics of photosynthetic gas exchange and chlorophyll fluorescence in the leaves of Physocarpus amurensis Maxim (PA) and Physocarpus opulifolius under flooding stress. Our results indicate a significantly higher flooding tolerance of P. opulifolius compared to P. amurensis. Especially in P. amurensis, the limitation of non-stomatal factors played a major role in the advanced stages of flooding stress, observed as a rapid increase of the intercellular C02 con- centration (Ci) and a decrease of the stomatal limitation value (Ls). The maximal PSII photochemical efficiencies (Fv/Fm) and actual photochemical efficiency (60PSU) in the leaves of P. opulifolius were extent of decrease during the than in P. amurensis. In significantly higher, and the flooding process was smaller addition, the non-chemical quenching (NPQ) in the leaves of P. opulifolius significandy increased from the 10th day under flooding stress, while the variation of NPQ in the leaves of P. amurensis was much smaller. This indicates that the leaves of P. opulifolius had not only higher PSII photochemical activity, but also improved tolerance to flooding stress, which may be caused by its ability to dissipate excess excitation energy by starting NPQ. At the 16th day under flooding stress, the PLABS significantly decreased with greater extent of decrease than Fv/Fm in the leaves of both Physocarpus, but the decreasing extent of PIABS in P. opulifolius was significantly smaller than in P. amurensis. In the 16th day under flooding stress, the fluorescence at J and I point (VJ and V1) in P. amurensis were significantly higher, and the extent of increase in VJ was greater than V1. However, the variations of VJ and V1 in the leaves of P. opulifolius were smaller, suggesting that the damage sites of flooding stress to PSII in the leaves of P. amurensis were mainly located in the electron transport process from QA at the PSII receptor side
基金Supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KSCX1-YW-03)National Natural Science Foundation of China (Grant No. 30330390)
文摘Dynamic changes in flag leaf angle, anatomy, photosynthesis, chlorophyll content, population photosynthesis, and light transmission are investigated in three wheat cultivars: Xiaoyan 81 (Xy 81) in which flag leaf angle changes from erect to draped, Xiaoyan 41 (Xy 41) in which flag leaf angle changes from erect to half draped (middle type), and Xiaoyan 6 (Xy 6) in which the flag leaf remains erect from the flowering to the grain-filling stage. No obvious differences in leaf thickness, leaf area, mesophyll morphology, granal stacking, photosynthesis, or chlorophyll content are found among the three cultivars. It is of interest to find that the flag leaf angle of Xy 81 changes from erect to draped during the grain - filling stage, but there are no obvious changes in chlorophyll content or photosynthetic capacity during this period, indicating that changes in flag leaf angle do not result from senescence. Moreover, the study shows that levels of population photosynthesis and light transmission in Xy 81 are higher than in Xy 41 and Xy 6. Taken together, these results demonstrate that dynamic changes in Xy 81 flag leaf angle enhance population photosynthesis and thus may improve wheat yield.