利用气化冲击焊接技术,制备了力学性能良好基于中间层的5A06铝合金与0Cr18Ni10Ti不锈钢气化冲击焊接接头,中间层3003铝合金与飞板5A06铝合金和靶板0Cr18Ni10Ti界面焊接良好,接头结合区域呈圆环状。通过信号采集系统分析了铝箔气化时间...利用气化冲击焊接技术,制备了力学性能良好基于中间层的5A06铝合金与0Cr18Ni10Ti不锈钢气化冲击焊接接头,中间层3003铝合金与飞板5A06铝合金和靶板0Cr18Ni10Ti界面焊接良好,接头结合区域呈圆环状。通过信号采集系统分析了铝箔气化时间和电流随能量输入的变化,采用OM和SEM分析了接头界面的微观形貌和元素分布。研究了能量输入对铝箔气化的时刻和接头力学性能的影响。结果表明,随着能量输入的增加,铝箔气化所需时间减小,最终碰撞速率增大,从而使焊接区域直径增大;接头的抗拉力和抗剪力随能量输入的增大而增大。当能量输入为9 kJ时,接头的最大抗拉力为44.0 k N,抗剪力为2.1 kN;5A06/3003界面呈中间对称波状结合,3003/0Cr18Ni10Ti界面以金属间化合物连接,结合区域错位分布。展开更多
Transparent armor consists of glass-polymer laminates in most cases.The formation and propagation of damage in the different glass layers has a strong influence on the ballistic resistance of such laminates.In order t...Transparent armor consists of glass-polymer laminates in most cases.The formation and propagation of damage in the different glass layers has a strong influence on the ballistic resistance of such laminates.In order to clarify(he course of events during projectile penetration,an experimental technique was developed,which allows visualizing the onset and propagation of damage in each single layer of the laminate.A telecentric objective lens was used together with a microsecond video camera that allows recording 100 frames at a maximum rate of 1 MHz in a backlit photography set-up.With this technique,the damage evolution could be visualized in glass laminates consisting of four glass layers with lateral dimensions 500 mm x 500 mm.Damage evolution was recorded during penetration of 7.62 mm AP projectiles with tungsten carbide core and a total mass of 1 1.1 g in the impact velocity range from 800 to 880 m/s.In order to measure the deformation of single glass plates within the laminates,a piece of reflecting tape was attached to the corresponding glass plate,and photonic Doppler velocimetry(PDV) was applied.With the photonic Doppler velocimeter.an infrared laser is used to illuminate an object to be measured and the Doppler-shifted light is superimposed to a reference light beam at the detector.The simultaneous visualization and PDV measurement of the glass deformation allow determining the deformation at the time of the onset of fracture.The analysis of the experimental data was supported by numerical simulations,using the AUTODYN commercial hydro-code.展开更多
文摘利用气化冲击焊接技术,制备了力学性能良好基于中间层的5A06铝合金与0Cr18Ni10Ti不锈钢气化冲击焊接接头,中间层3003铝合金与飞板5A06铝合金和靶板0Cr18Ni10Ti界面焊接良好,接头结合区域呈圆环状。通过信号采集系统分析了铝箔气化时间和电流随能量输入的变化,采用OM和SEM分析了接头界面的微观形貌和元素分布。研究了能量输入对铝箔气化的时刻和接头力学性能的影响。结果表明,随着能量输入的增加,铝箔气化所需时间减小,最终碰撞速率增大,从而使焊接区域直径增大;接头的抗拉力和抗剪力随能量输入的增大而增大。当能量输入为9 kJ时,接头的最大抗拉力为44.0 k N,抗剪力为2.1 kN;5A06/3003界面呈中间对称波状结合,3003/0Cr18Ni10Ti界面以金属间化合物连接,结合区域错位分布。
文摘Transparent armor consists of glass-polymer laminates in most cases.The formation and propagation of damage in the different glass layers has a strong influence on the ballistic resistance of such laminates.In order to clarify(he course of events during projectile penetration,an experimental technique was developed,which allows visualizing the onset and propagation of damage in each single layer of the laminate.A telecentric objective lens was used together with a microsecond video camera that allows recording 100 frames at a maximum rate of 1 MHz in a backlit photography set-up.With this technique,the damage evolution could be visualized in glass laminates consisting of four glass layers with lateral dimensions 500 mm x 500 mm.Damage evolution was recorded during penetration of 7.62 mm AP projectiles with tungsten carbide core and a total mass of 1 1.1 g in the impact velocity range from 800 to 880 m/s.In order to measure the deformation of single glass plates within the laminates,a piece of reflecting tape was attached to the corresponding glass plate,and photonic Doppler velocimetry(PDV) was applied.With the photonic Doppler velocimeter.an infrared laser is used to illuminate an object to be measured and the Doppler-shifted light is superimposed to a reference light beam at the detector.The simultaneous visualization and PDV measurement of the glass deformation allow determining the deformation at the time of the onset of fracture.The analysis of the experimental data was supported by numerical simulations,using the AUTODYN commercial hydro-code.