Light–matter interaction plays an important role in the non-equilibrium physics, especially in strongly correlated electron systems with complex phases. Photoinduced effect can cause the variation in the physical pro...Light–matter interaction plays an important role in the non-equilibrium physics, especially in strongly correlated electron systems with complex phases. Photoinduced effect can cause the variation in the physical properties and produce some emergent phases. As a classical archetype, manganites have received much attention due to their colossal magnetoresistance(CMR) effect and the strong interaction of charge, spin, orbital, and lattice degrees of freedom. In this paper, we give an overview of photoinduced effect in manganites and their heterostructures. In particular, some materials, including ZnO, Si,BiFeO3(BFO), titanate-based oxides, and 0.7 Pb(Mg(1/3) Nb(2/3))O3-0.3 PbTiO3(PMN-PT) have been integrated with manganites. Heterostructures composed of these materials display some exciting and intriguing properties. We do hope that this review offers a guiding idea and more meaningful physical phenomena will be discovered in active areas of solid state physics and materials science.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51572222,50702046,51172183,and 11604265)
文摘Light–matter interaction plays an important role in the non-equilibrium physics, especially in strongly correlated electron systems with complex phases. Photoinduced effect can cause the variation in the physical properties and produce some emergent phases. As a classical archetype, manganites have received much attention due to their colossal magnetoresistance(CMR) effect and the strong interaction of charge, spin, orbital, and lattice degrees of freedom. In this paper, we give an overview of photoinduced effect in manganites and their heterostructures. In particular, some materials, including ZnO, Si,BiFeO3(BFO), titanate-based oxides, and 0.7 Pb(Mg(1/3) Nb(2/3))O3-0.3 PbTiO3(PMN-PT) have been integrated with manganites. Heterostructures composed of these materials display some exciting and intriguing properties. We do hope that this review offers a guiding idea and more meaningful physical phenomena will be discovered in active areas of solid state physics and materials science.