Solar-blind photodetectors are of great interest to a wide range of industrial, civil, environmental, and biological applications. As one of the emerging ultrawide-bandgap semiconductors, gallium oxide(Ga_2O_3) exhibi...Solar-blind photodetectors are of great interest to a wide range of industrial, civil, environmental, and biological applications. As one of the emerging ultrawide-bandgap semiconductors, gallium oxide(Ga_2O_3) exhibits unique advantages over other wide-bandgap semiconductors, especially in developing high-performance solar-blind photodetectors. This paper comprehensively reviews the latest progresses of solar-blind photodetectors based on Ga_2O_3 materials in various forms of bulk single crystal, epitaxial films, nanostructures, and their ternary alloys.The basic working principles of photodetectors and the fundamental properties and synthesis of Ga_2O_3, as well as device processing developments, have been briefly summarized. A special focus is to address the physical mechanism for commonly observed huge photoconductive gains. Benefitting from the rapid development in material epitaxy and device processes, Ga_2O_3-based solar-blind detectors represent to date one of the most prospective solutions for UV detection technology towards versatile applications.展开更多
Two-dimensional(2D)materials are intensively attractive for fabricating high sensitive photodetectors in terms of atomically thin flexible and ultrafast charge transport feature.Due to their atomically thin body,desig...Two-dimensional(2D)materials are intensively attractive for fabricating high sensitive photodetectors in terms of atomically thin flexible and ultrafast charge transport feature.Due to their atomically thin body,designing high performance detector requires new physical mechanisms and device structures.In this review,we classify design strategies and device structures into four categories depending on their physical mechanisms(photovoltaic effect,photoconductive effect,photothermoelectric effect or photobolometric effect,and surface plasma-wave-assisted effect),and summarize the device performances.Finally,future prospects and development direction for 2D material photodetectors are described.Those design strategies descriptions about photoelectronic detector provide a reference for high responsivity and fast response speed photodetector at broadband sensing in the future.展开更多
The research of ultraviolet photodetectors(UV PDs)have been attracting extensive attention,due to their important applications in many areas.In this study,PtSe2/GaN heterojunction is in-situ fabricated by synthesis of...The research of ultraviolet photodetectors(UV PDs)have been attracting extensive attention,due to their important applications in many areas.In this study,PtSe2/GaN heterojunction is in-situ fabricated by synthesis of large-area vertically standing two-dimensional(2D)PtSe2 film on n-GaN substrate.The PtSe2/GaN heterojunction device demonstrates excellent photoresponse properties under illumination by deep UV light of 265 nm at zero bias voltage.Further analysis reveals that a high responsivity of 193 mA·W^-1,an ultrahigh specific detectivity of 3.8 × 10^14 Jones,linear dynamic range of 155d B and current on/off ratio of^10^8,as well as fast response speeds of 45/102μs were obtained at zero bias voltage.Moreover,this device response quickly to the pulse laser of 266 nm with a rise time of 172 ns.Such high-performanee PtSe2/GaN heteroj u nction UV PD demonstrated in this work is far superior to previously reported results,suggesting that it has great potential for deep UV detection.展开更多
Two-dimensional(2D) anisotropic materials, such as B-P, B-As, GeSe, GeAs, ReSe2, KP15 and their hybrid systems, exhibit unique crystal structures and extraordinary anisotropy. This review presents a comprehensive comp...Two-dimensional(2D) anisotropic materials, such as B-P, B-As, GeSe, GeAs, ReSe2, KP15 and their hybrid systems, exhibit unique crystal structures and extraordinary anisotropy. This review presents a comprehensive comparison of various 2D anisotropic crystals as well as relevant FETs and photodetectors, especially on their particular anisotropy in optical and electrical properties. First, the structure of typical 2D anisotropic crystal as well as the analysis of structural anisotropy is provided. Then, recent researches on anisotropic Raman spectra are reviewed. Particularly, a brief measurement principle of Raman spectra under three typical polarized measurement configurations is introduced. Finally, recent progress on the electrical and photoelectrical properties of FETs and polarization-sensitive photodetectors based on 2D anisotropic materials is summarized for the comparison between different 2D anisotropic materials. Beyond the high response speed, sensitivity and on/off ratio, these 2D anisotropic crystals exhibit highly conduction ratio and dichroic ratio which can be applied in terms of polarization sensors, polarization spectroscopy imaging, optical radar and remote sensing.展开更多
It is a rapidly developed subject in expanding the fundamental properties and application of two-dimensional(2D)materials.The weak van der Waals interaction in 2D materials inspired researchers to explore 2D heterostr...It is a rapidly developed subject in expanding the fundamental properties and application of two-dimensional(2D)materials.The weak van der Waals interaction in 2D materials inspired researchers to explore 2D heterostructures(2DHs)based broadband photodetectors in the far-infrared(IR)and middle-IR regions with high response and high detectivity.This review focuses on the strategy and motivation of designing 2DHs based high-performance IR photodetectors,which provides a wide view of this field and new expectation for advanced photodetectors.First,the photocarriers'generation mechanism and frequently employed device structures are presented.Then,the 2DHs are divided into semimetal/semiconductor 2DHs,semiconductor/semiconductor 2DHs,and multidimensional semi-2DHs;the advantages,motivation,mechanism,recent progress,and outlook are discussed.Finally,the challenges for next-generation photodetectors are described for this rapidly developing field.展开更多
Since the successful fabrication of two-dimensional(2D)tellurium(Te)in 2017,its fascinating properties including a thickness dependence bandgap,environmental stability,piezoelectric effect,high carrier mobility,and ph...Since the successful fabrication of two-dimensional(2D)tellurium(Te)in 2017,its fascinating properties including a thickness dependence bandgap,environmental stability,piezoelectric effect,high carrier mobility,and photoresponse among others show great potential for various applications.These include photodetectors,field-effect transistors,piezoelectric devices,modulators,and energy harvesting devices.However,as a new member of the 2D material family,much less known is about 2D Te compared to other 2D materials.Motivated by this lack of knowledge,we review the recent progress of research into 2D Te nanoflakes.Firstly,we introduce the background and motivation of this review.Then,the crystal structures and synthesis methods are presented,followed by an introduction to their physical properties and applications.Finally,the challenges and further development directions are summarized.We believe that milestone investigations of 2D Te nanoflakes will emerge soon,which will bring about great industrial revelations in 2D materials-based nanodevice commercialization.展开更多
There is an emerging need for high-sensitivity solar-blind deep ultraviolet(DUV)photodetectors with an ultra-fast response speed.Although nanoscale devices based on Ga_(2)O_(3)nanostructures have been developed,their ...There is an emerging need for high-sensitivity solar-blind deep ultraviolet(DUV)photodetectors with an ultra-fast response speed.Although nanoscale devices based on Ga_(2)O_(3)nanostructures have been developed,their practical applications are greatly limited by their slow response speed as well as low specific detectivity.Here,the successful fabrication of two-/three-dimensional(2D/3D)graphene(Gr)/PtSe2/β-Ga_(2)O_(3)Schottky junction devices for high-sensitivity solar-blind DUV photodetectors is demonstrated.Benefitting from the high-quality 2D/3D Schottky junction,the vertically stacked structure,and the superior-quality transparent graphene electrode for effective carrier collection,the photodetector is highly sensitive to DUV light illumination and achieves a high responsivity of 76.2 mA/W,a large on/off current ratio of~105,along with an ultra-high ultraviolet(UV)/visible rejection ratio of 1.8×104.More importantly,it has an ultra-fast response time of 12µs and a remarkable specific detectivity of~1013 Jones.Finally,an excellent DUV imaging capability has been identified based on the Gr/PtSe2/β-Ga_(2)O_(3)Schottky junction photodetector,demonstrating its great potential application in DUV imaging systems.展开更多
Low-dimensional(including two-dimensional[2D],one-dimensional[1D],and zero-dimensional[0D])semiconductor materials have great potential in electronic/optoelectronic applications due to their unique structure and chara...Low-dimensional(including two-dimensional[2D],one-dimensional[1D],and zero-dimensional[0D])semiconductor materials have great potential in electronic/optoelectronic applications due to their unique structure and characteristics.Many 2D(such as transition metal dichalcogenides and black phosphorus)and 1D(such as NWs)materials have demonstrated superior performance in field effect transistors,photodetectors(PDs),and some flexible devices.And in some hybrid structures of 0D materials and 1D or 2D materials,the modification of 1D and 2D devices by 0D materials is embodied.This type of hybrid heterostructure has a larger performance optimization compared with the original.In the application of PDs,the variety of lowdimensional materials and properties enable wide-spectrum detection from ultraviolet UV to infrared,which provide a potential option for PDs under various conditions.For flexible electronic devices,high performance and mechanical stability are two important features.Low-dimensional materials offer unparalleled advantages in flexible devices.In this review,we will focus on the various low-dimensional materials that have been extensively studied and their applications in the electronics/optoelectronic and flexible electronics.From the composition and lattice structure of materials(including alloys)to the construction of various devices and heterostructures,we will introduce their application and recent development under various conditions.These works can provide valuable guidance for the construction and application of more highperformance and multifunctional devices.展开更多
基金National Key Research and Development Project(2017YFB0403003,2018YFB0406502)National Natural Science Foundation of China(NSFC)(61322403,61774081)+4 种基金State Key Laboratory of Wide-Bandgap Semiconductor Power Electric Devices(2017KF001)Natural Science Foundation of Jiangsu Province(BK20161401)State Key R&D Project of Jiangsu(BE2018115)Fundamental Research Funds for the Central Universities(021014380085,021014380093)Postgraduate Research and Practice Innovation Program of Jiangsu Province
文摘Solar-blind photodetectors are of great interest to a wide range of industrial, civil, environmental, and biological applications. As one of the emerging ultrawide-bandgap semiconductors, gallium oxide(Ga_2O_3) exhibits unique advantages over other wide-bandgap semiconductors, especially in developing high-performance solar-blind photodetectors. This paper comprehensively reviews the latest progresses of solar-blind photodetectors based on Ga_2O_3 materials in various forms of bulk single crystal, epitaxial films, nanostructures, and their ternary alloys.The basic working principles of photodetectors and the fundamental properties and synthesis of Ga_2O_3, as well as device processing developments, have been briefly summarized. A special focus is to address the physical mechanism for commonly observed huge photoconductive gains. Benefitting from the rapid development in material epitaxy and device processes, Ga_2O_3-based solar-blind detectors represent to date one of the most prospective solutions for UV detection technology towards versatile applications.
基金The authors acknowledge financial support from National Science Funds for Creative Research Groups of China(No.61421002)the National Natural Science Foundation of China(No.61501092,61734003,61521001,61861166001),Key Laboratory of Advanced Photonic and Electronic Materials,Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics.
文摘Two-dimensional(2D)materials are intensively attractive for fabricating high sensitive photodetectors in terms of atomically thin flexible and ultrafast charge transport feature.Due to their atomically thin body,designing high performance detector requires new physical mechanisms and device structures.In this review,we classify design strategies and device structures into four categories depending on their physical mechanisms(photovoltaic effect,photoconductive effect,photothermoelectric effect or photobolometric effect,and surface plasma-wave-assisted effect),and summarize the device performances.Finally,future prospects and development direction for 2D material photodetectors are described.Those design strategies descriptions about photoelectronic detector provide a reference for high responsivity and fast response speed photodetector at broadband sensing in the future.
基金the National Natural Science Foundation of China(Nos.61605174 and 61774136)the Key Projects of Higher Education in Henan Province(No.17A140012)Research Grants Council,University Grants Committee(RGC,UGC)(GRF 152109/16E PolyU B-Q52T).
文摘The research of ultraviolet photodetectors(UV PDs)have been attracting extensive attention,due to their important applications in many areas.In this study,PtSe2/GaN heterojunction is in-situ fabricated by synthesis of large-area vertically standing two-dimensional(2D)PtSe2 film on n-GaN substrate.The PtSe2/GaN heterojunction device demonstrates excellent photoresponse properties under illumination by deep UV light of 265 nm at zero bias voltage.Further analysis reveals that a high responsivity of 193 mA·W^-1,an ultrahigh specific detectivity of 3.8 × 10^14 Jones,linear dynamic range of 155d B and current on/off ratio of^10^8,as well as fast response speeds of 45/102μs were obtained at zero bias voltage.Moreover,this device response quickly to the pulse laser of 266 nm with a rise time of 172 ns.Such high-performanee PtSe2/GaN heteroj u nction UV PD demonstrated in this work is far superior to previously reported results,suggesting that it has great potential for deep UV detection.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 61622406, 61571415, 11874350, 11434010)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000)
文摘Two-dimensional(2D) anisotropic materials, such as B-P, B-As, GeSe, GeAs, ReSe2, KP15 and their hybrid systems, exhibit unique crystal structures and extraordinary anisotropy. This review presents a comprehensive comparison of various 2D anisotropic crystals as well as relevant FETs and photodetectors, especially on their particular anisotropy in optical and electrical properties. First, the structure of typical 2D anisotropic crystal as well as the analysis of structural anisotropy is provided. Then, recent researches on anisotropic Raman spectra are reviewed. Particularly, a brief measurement principle of Raman spectra under three typical polarized measurement configurations is introduced. Finally, recent progress on the electrical and photoelectrical properties of FETs and polarization-sensitive photodetectors based on 2D anisotropic materials is summarized for the comparison between different 2D anisotropic materials. Beyond the high response speed, sensitivity and on/off ratio, these 2D anisotropic crystals exhibit highly conduction ratio and dichroic ratio which can be applied in terms of polarization sensors, polarization spectroscopy imaging, optical radar and remote sensing.
基金supported by the National Natural Science Foundation of China(Grant Nos.51722204,91421110,51802145)the National Key Basic Research Program of China(Grant No.2014CB931702)+3 种基金the Sichuan Provincial Fund for Distinguished Young Academic and Technology Leaders(Grant No.2014JQ0011)the Science and Technology Support Program of Sichuan Province(Grant No.2018RZ0042,2016RZ0033,2018RZ0082)the Natural Science Foundation of Guangdong Province(2018A030310225)China Postdoctoral Science Foundation(Grant No.2018M643443).
文摘It is a rapidly developed subject in expanding the fundamental properties and application of two-dimensional(2D)materials.The weak van der Waals interaction in 2D materials inspired researchers to explore 2D heterostructures(2DHs)based broadband photodetectors in the far-infrared(IR)and middle-IR regions with high response and high detectivity.This review focuses on the strategy and motivation of designing 2DHs based high-performance IR photodetectors,which provides a wide view of this field and new expectation for advanced photodetectors.First,the photocarriers'generation mechanism and frequently employed device structures are presented.Then,the 2DHs are divided into semimetal/semiconductor 2DHs,semiconductor/semiconductor 2DHs,and multidimensional semi-2DHs;the advantages,motivation,mechanism,recent progress,and outlook are discussed.Finally,the challenges for next-generation photodetectors are described for this rapidly developing field.
基金supported by the National Natural Science Fund of China(Grant Nos.61875138,61435010,and 61961136001)Science and Technology Innovation Commission of Shenzhen(KQJSCX20180328095501798,JCYJ20180507182047316,KQTD2015032416270385,JCYJ20170811093453105,JCYJ20180307164612205 and GJHZ20180928160209731)+1 种基金Natural Science Foundation of Guangdong Province for Distinguished Young Scholars(2018B030306038)Natural Science Foundation of SZU(No.860-000002110429).
文摘Since the successful fabrication of two-dimensional(2D)tellurium(Te)in 2017,its fascinating properties including a thickness dependence bandgap,environmental stability,piezoelectric effect,high carrier mobility,and photoresponse among others show great potential for various applications.These include photodetectors,field-effect transistors,piezoelectric devices,modulators,and energy harvesting devices.However,as a new member of the 2D material family,much less known is about 2D Te compared to other 2D materials.Motivated by this lack of knowledge,we review the recent progress of research into 2D Te nanoflakes.Firstly,we introduce the background and motivation of this review.Then,the crystal structures and synthesis methods are presented,followed by an introduction to their physical properties and applications.Finally,the challenges and further development directions are summarized.We believe that milestone investigations of 2D Te nanoflakes will emerge soon,which will bring about great industrial revelations in 2D materials-based nanodevice commercialization.
基金the National Natural Science Foundation of China(Nos.U2004165,51702017,and 11974016)the Natural Science Foundation of Henan Province,China(No.202300410376)Research Grants Council of Hong Kong,China(No.GRF 152093/18E PolyU B-Q65N).
文摘There is an emerging need for high-sensitivity solar-blind deep ultraviolet(DUV)photodetectors with an ultra-fast response speed.Although nanoscale devices based on Ga_(2)O_(3)nanostructures have been developed,their practical applications are greatly limited by their slow response speed as well as low specific detectivity.Here,the successful fabrication of two-/three-dimensional(2D/3D)graphene(Gr)/PtSe2/β-Ga_(2)O_(3)Schottky junction devices for high-sensitivity solar-blind DUV photodetectors is demonstrated.Benefitting from the high-quality 2D/3D Schottky junction,the vertically stacked structure,and the superior-quality transparent graphene electrode for effective carrier collection,the photodetector is highly sensitive to DUV light illumination and achieves a high responsivity of 76.2 mA/W,a large on/off current ratio of~105,along with an ultra-high ultraviolet(UV)/visible rejection ratio of 1.8×104.More importantly,it has an ultra-fast response time of 12µs and a remarkable specific detectivity of~1013 Jones.Finally,an excellent DUV imaging capability has been identified based on the Gr/PtSe2/β-Ga_(2)O_(3)Schottky junction photodetector,demonstrating its great potential application in DUV imaging systems.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.61622406,61571415,61625404,61888102)the National Key Research and Development Program of China(Grant No.2017YFA0207500,2016YFB0700700)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB30000000)the Beijing Academy of Quantum Information Sciences(Grant No.Y18G04).
文摘Low-dimensional(including two-dimensional[2D],one-dimensional[1D],and zero-dimensional[0D])semiconductor materials have great potential in electronic/optoelectronic applications due to their unique structure and characteristics.Many 2D(such as transition metal dichalcogenides and black phosphorus)and 1D(such as NWs)materials have demonstrated superior performance in field effect transistors,photodetectors(PDs),and some flexible devices.And in some hybrid structures of 0D materials and 1D or 2D materials,the modification of 1D and 2D devices by 0D materials is embodied.This type of hybrid heterostructure has a larger performance optimization compared with the original.In the application of PDs,the variety of lowdimensional materials and properties enable wide-spectrum detection from ultraviolet UV to infrared,which provide a potential option for PDs under various conditions.For flexible electronic devices,high performance and mechanical stability are two important features.Low-dimensional materials offer unparalleled advantages in flexible devices.In this review,we will focus on the various low-dimensional materials that have been extensively studied and their applications in the electronics/optoelectronic and flexible electronics.From the composition and lattice structure of materials(including alloys)to the construction of various devices and heterostructures,we will introduce their application and recent development under various conditions.These works can provide valuable guidance for the construction and application of more highperformance and multifunctional devices.