AIM: To compare the diagnostic accuracy of pelvic phased-array magnetic resonance imaging (MRI) and endorectal ultrasonography (ERUS) in the preoperative staging of rectal carcinoma. METHODS: Thirty-four patients (15 ...AIM: To compare the diagnostic accuracy of pelvic phased-array magnetic resonance imaging (MRI) and endorectal ultrasonography (ERUS) in the preoperative staging of rectal carcinoma. METHODS: Thirty-four patients (15 males, 19 females) with ages ranging between 29 and 75 who have biopsy proven rectal tumor underwent both MRI and ERUS examinations before surgery. All patients were evaluated to determine the diagnostic accuracy of depth of transmural tumor invasion and lymph node metastases. Imaging results were correlated with histopathological findings regarded as the gold standard and both modalities were compared in terms of predicting preoperative local staging of rectal carcinoma. RESULTS: The pathological T stage of the tumors was: pT1 in 1 patient, pT2 in 9 patients, pT3 in 21 patients and pT4 in 3 patients. The pathological N stage of the tumors was: pN0 in 19 patients, pN1 in 9 patients and pN2 in 6 patients. The accuracy of T staging for MRI was 89.70% (27 out of 34). The sensitivity was 79.41% and the specificity was 93.14%. The accuracy of T staging for ERUS was 85.29% (24 out of 34). The sensitivity was 70.59% and the specificity was 90.20%. Detection of lymph node metastases usingphased-array MRI gave an accuracy of 74.50% (21 out of 34). The sensitivity and specificity was found to be 61.76% and 80.88%, respectively. By using ERUS in the detection of lymph node metastases, an accuracy of 76.47% (18 out of 34) was obtained. The sensitivity and specificity were found to be 52.94% and 84.31%, respectively. CONCLUSION: ERUS and phased-array MRI are complementary methods in the accurate preoperative staging of rectal cancer. In conclusion, we can state that phased-array MRI was observed to be slightly superior in determining the depth of transmural invasion (T stage) and has same value in detecting lymph node metastases (N stage) as compared to ERUS.展开更多
The strong destructive winds during tornadoes can greatly threaten human life and destroy property.The increasing availability of visual and remote observations,especially by Doppler weather radars,is of great value i...The strong destructive winds during tornadoes can greatly threaten human life and destroy property.The increasing availability of visual and remote observations,especially by Doppler weather radars,is of great value in understanding tornado formation and issuing warnings to the public.In this study,we present the first documented tornado over water detected by a state-of-the-art dual-polarization phased-array radar(dual-PAR)in China.In contrast to new-generation weather radars,the dual-PAR shows great advantages in tornado detection for its high spatial resolution,reliable polarimetric variables,and rapid-scan strategy.The polarimetric signature of copolar cross-correlation coefficient with anomalously low magnitude appears to be effective for verifying a tornado and thus is helpful for issuing tornado warnings.The Guangdong Meteorological Service has been developing an experimental X-band dual-PAR network in the Pearl River Delta with the goal of deploying at least 40 advanced dual-PARs and other dual-polarization weather radars before 2035.This network is the first quasi-operational X-band dual-PAR network with unprecedented high coverage in the globe.With such high-performance close-range PARs,efficient operational nowcasting and warning services for small-scale,rapidly evolving,and damaging weather(e.g.,tornadoes,localized heavy rainfall,microbursts,and hail)can be expected.展开更多
A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm o...A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar.展开更多
An X-band phased-array meteorological radar (XPAR) was developed in China and will be installed in an airplane to observe precipitation systems for research purposes.In order to examine the observational capability ...An X-band phased-array meteorological radar (XPAR) was developed in China and will be installed in an airplane to observe precipitation systems for research purposes.In order to examine the observational capability of the XPAR and to test the operating mode and calibration before installation in the airplane,a mobile X-band Doppler radar (XDR) and XPAR were installed at the same site to observe convective precipitation events.Nearby S-band operational radar (SA) data were also collected to examine the reflectivity bias of XPAR.An algorithm for quantitative analysis of reflectivity and velocity differences and radar sensitivity of XPAR is presented.The reflectivity and velocity biases of XPAR are examined with SA and XDR.Reflectivity sensitivities,the horizontal and vertical structures of reflectivity by the three radars are compared and analyzed.The results indicated that while the XPRA with different operating modes can capture the main characteristic of 3D structures of precipitation,and the averaged reflectivity differences between XPAR and XDR,and XDR and SA,were 0.4 dB and 6.6 dB on 13 July and-4.5 dB and 5.1 dB on 2 August 2012,respectively.The minimum observed reflectivities at a range of 50 km for XPAR,XDR and SA were about 15.4 dBZ,13.5 dBZ and-3.5 dBZ,respectively.The bias of velocity between XPAR and XDR was negligible.This study provides a possible method for the quantitative comparison of the XPAR data,as well as the sensitivity of reflectivity,calibration,gain and bias introduced by pulse compression.展开更多
Laboratory cased-hole acoustic logging simulations are developed with the linear phased-array transmitter in scaled cased well models for evaluating the feasibility of extracting formation acoustic parameters through ...Laboratory cased-hole acoustic logging simulations are developed with the linear phased-array transmitter in scaled cased well models for evaluating the feasibility of extracting formation acoustic parameters through casing.The full waveforms are measured with different cement bonding models.By analyzing the measured wavetrains and the time-slowness correlation graphs,it is showed that when the generation conditions of the refracted compressional wave and the refracted shear wave are reached successively by regulating the direction of acoustic beam radiated from the linear phased-array transmitter,steered angle of the main radiation lobe with both good bonding interfaces.The refracted compressional wave and the refracted shear wave can be stimulated obviously and the casing wave can be suppressed effectively,even when the casing and cement(or the cement and formation) is not bonded.Based on these observations, it is worthwhile to apply the linear phased-array transmitter to determine formation velocities,particularly in poorly bonded cased well.The works establish the experimental and theoretical foundation for new generation cased-hole acoustic logging tool development.展开更多
文摘AIM: To compare the diagnostic accuracy of pelvic phased-array magnetic resonance imaging (MRI) and endorectal ultrasonography (ERUS) in the preoperative staging of rectal carcinoma. METHODS: Thirty-four patients (15 males, 19 females) with ages ranging between 29 and 75 who have biopsy proven rectal tumor underwent both MRI and ERUS examinations before surgery. All patients were evaluated to determine the diagnostic accuracy of depth of transmural tumor invasion and lymph node metastases. Imaging results were correlated with histopathological findings regarded as the gold standard and both modalities were compared in terms of predicting preoperative local staging of rectal carcinoma. RESULTS: The pathological T stage of the tumors was: pT1 in 1 patient, pT2 in 9 patients, pT3 in 21 patients and pT4 in 3 patients. The pathological N stage of the tumors was: pN0 in 19 patients, pN1 in 9 patients and pN2 in 6 patients. The accuracy of T staging for MRI was 89.70% (27 out of 34). The sensitivity was 79.41% and the specificity was 93.14%. The accuracy of T staging for ERUS was 85.29% (24 out of 34). The sensitivity was 70.59% and the specificity was 90.20%. Detection of lymph node metastases usingphased-array MRI gave an accuracy of 74.50% (21 out of 34). The sensitivity and specificity was found to be 61.76% and 80.88%, respectively. By using ERUS in the detection of lymph node metastases, an accuracy of 76.47% (18 out of 34) was obtained. The sensitivity and specificity were found to be 52.94% and 84.31%, respectively. CONCLUSION: ERUS and phased-array MRI are complementary methods in the accurate preoperative staging of rectal cancer. In conclusion, we can state that phased-array MRI was observed to be slightly superior in determining the depth of transmural invasion (T stage) and has same value in detecting lymph node metastases (N stage) as compared to ERUS.
基金Key-Area R&D Program of Guangdong Province(2020B1111200001)National Key R&D Program of China(2017YFC1501701)+1 种基金National Natural Science Foundation of China(41875051)Guangzhou Municipal Science and Technology Planning Project(201903010101)
文摘The strong destructive winds during tornadoes can greatly threaten human life and destroy property.The increasing availability of visual and remote observations,especially by Doppler weather radars,is of great value in understanding tornado formation and issuing warnings to the public.In this study,we present the first documented tornado over water detected by a state-of-the-art dual-polarization phased-array radar(dual-PAR)in China.In contrast to new-generation weather radars,the dual-PAR shows great advantages in tornado detection for its high spatial resolution,reliable polarimetric variables,and rapid-scan strategy.The polarimetric signature of copolar cross-correlation coefficient with anomalously low magnitude appears to be effective for verifying a tornado and thus is helpful for issuing tornado warnings.The Guangdong Meteorological Service has been developing an experimental X-band dual-PAR network in the Pearl River Delta with the goal of deploying at least 40 advanced dual-PARs and other dual-polarization weather radars before 2035.This network is the first quasi-operational X-band dual-PAR network with unprecedented high coverage in the globe.With such high-performance close-range PARs,efficient operational nowcasting and warning services for small-scale,rapidly evolving,and damaging weather(e.g.,tornadoes,localized heavy rainfall,microbursts,and hail)can be expected.
基金supported by the Pre-research Fund (N0901-041)the Funding of Jiangsu Innovation Program for Graduate Education(CX09B 081Z CX10B 110Z)
文摘A novel adaptive sampling interval algorithm for multitarget tracking is presented. This algorithm which is based on interacting multiple models incorporates the grey relational grade (GRG) into the particle swarm optimization (PSO). Firstly, the desired tracking accuracy is set for each target. Secondly, sampling intervals are selected as particles, and then the advantage of the GRG is taken as the measurement function for resource management. Meanwhile, the fitness value of the PSO is used to measure the difference between desired tracking accuracy and estimated tracking accuracy. Finally, it is suggested that the radar should track the target whose prediction value of the next sampling interval is the smallest. Simulations show that the proposed method improves both the tracking accuracy and tracking efficiency of the phased-array radar.
基金funded by National High-Tech Research and Development Projects (863 Grant No. 2007AA061901)+2 种基金the National Key Program for Developing Basic Sciences (Grant No. 2012CB417202)the National Natural Science Foundation of China (Grant No. 41175038)the Public Welfare Meteorological Special Project (Grant No. GYHY201106046)
文摘An X-band phased-array meteorological radar (XPAR) was developed in China and will be installed in an airplane to observe precipitation systems for research purposes.In order to examine the observational capability of the XPAR and to test the operating mode and calibration before installation in the airplane,a mobile X-band Doppler radar (XDR) and XPAR were installed at the same site to observe convective precipitation events.Nearby S-band operational radar (SA) data were also collected to examine the reflectivity bias of XPAR.An algorithm for quantitative analysis of reflectivity and velocity differences and radar sensitivity of XPAR is presented.The reflectivity and velocity biases of XPAR are examined with SA and XDR.Reflectivity sensitivities,the horizontal and vertical structures of reflectivity by the three radars are compared and analyzed.The results indicated that while the XPRA with different operating modes can capture the main characteristic of 3D structures of precipitation,and the averaged reflectivity differences between XPAR and XDR,and XDR and SA,were 0.4 dB and 6.6 dB on 13 July and-4.5 dB and 5.1 dB on 2 August 2012,respectively.The minimum observed reflectivities at a range of 50 km for XPAR,XDR and SA were about 15.4 dBZ,13.5 dBZ and-3.5 dBZ,respectively.The bias of velocity between XPAR and XDR was negligible.This study provides a possible method for the quantitative comparison of the XPAR data,as well as the sensitivity of reflectivity,calibration,gain and bias introduced by pulse compression.
基金supported by the National Natural Science Foundation of China(40804020)Natural Science Foundation of Shandong(ZR2011DQ020)
文摘Laboratory cased-hole acoustic logging simulations are developed with the linear phased-array transmitter in scaled cased well models for evaluating the feasibility of extracting formation acoustic parameters through casing.The full waveforms are measured with different cement bonding models.By analyzing the measured wavetrains and the time-slowness correlation graphs,it is showed that when the generation conditions of the refracted compressional wave and the refracted shear wave are reached successively by regulating the direction of acoustic beam radiated from the linear phased-array transmitter,steered angle of the main radiation lobe with both good bonding interfaces.The refracted compressional wave and the refracted shear wave can be stimulated obviously and the casing wave can be suppressed effectively,even when the casing and cement(or the cement and formation) is not bonded.Based on these observations, it is worthwhile to apply the linear phased-array transmitter to determine formation velocities,particularly in poorly bonded cased well.The works establish the experimental and theoretical foundation for new generation cased-hole acoustic logging tool development.