It is of great importance to treat a bacterial-infected wound by a smart dressing capable of delivering antibiotics in a smart manner without causing drug resistance.The construction of smart release nanocontainers re...It is of great importance to treat a bacterial-infected wound by a smart dressing capable of delivering antibiotics in a smart manner without causing drug resistance.The construction of smart release nanocontainers responsive to near-infrared(NIR)laser irradiation in an on-demand and stepwise way is a promising strategy for avoiding the emergence of multidrug-resistant bacteria.Here,we develop a hydrogel composite made of alginate and nanotubes with an efficient NIR-triggered release of rifampicin and outstanding antibacterial ability.This composite hydrogel is prepared through co-encapsulating antibacterial drug(rifampicin),NIR-absorbing dye(indocyanine green),and phase-change materials(a eutectic mixture of fatty acids)into halloysite nanotubes,followed by incorporation into alginate hydrogels,allowing the in-situ gelation at room temperature and maintaining the integrity of drug-loaded nanotubes.Among them,the eutectic mixture with a melting point of 39℃ serves as the biocompatible phase-change material to facilitate the NIR-triggered drug release.The resultant phase-change material gated-nanotubes exhibit a prominent photothermal efficiency with multistep drug release under laser irradiation.In an in vitro assay,composite hydrogel provides good antibacterial potency against Staphylococcus aureus,one of the most prevalent microorganisms of dangerous gas gangrene.A bacterial-infected rat full-thickness wound model demonstrates that the NIR-responsive composite hydrogel inhibits the bacteria colonization and suppresses the inflammatory response caused by bacteria,promoting angiogenesis and collagen deposition to accelerate wound regeneration.The NIR-responsive composite hydrogel has a great po-tential as an antibacterial wound dressing functionalized with controlled multistep treatment of the infected sites.展开更多
This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investi...This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investigation in methanol steam reforming(MSR).Various catalysts were prepared under different conditions,such as calcination temperature,calcination atmosphere,and heating rate.Characterization techniques including BET,XRD,XPS,SEM and H2-TPR were employed to analyze the samples.The results revealed significant effects of calcination temperature on the phase compositions,specific surface area,reduction performance,and surface properties of the CA-T catalysts.Based on the findings,a synthesis route of CuAlO_(2) via the solid-phase method was proposed,highlighting the importance of high calcination temperature,nitrogen atmosphere,and low heating rate for CuAlO_(2) formation.Catalytic evaluation data demonstrated that CuAlO_(2) could catalyze MSR without pre-reduction,with the catalytic performance of CA-T catalysts being notably influenced by calcination temperature.Among the prepared catalysts,the CA-1100 catalyst exhibited the highest catalytic activity and stability.The findings of this study might be useful for the further study of the catalytic material for sustained release catalysis,including the synthesis of catalytic materials and the regulation of sustained release catalytic performance.展开更多
Arranging heat exchanger in filling body to extract geothermal energy is an effective way to alleviate the problems of high ground pressure and high ground temperature in deep resource exploitation.Filling body with c...Arranging heat exchanger in filling body to extract geothermal energy is an effective way to alleviate the problems of high ground pressure and high ground temperature in deep resource exploitation.Filling body with casing heat exchanger was acted as research object,encapsulating phase change materials(PCMs)in annular space.During heat storage and heat release process,the effects of different PCMs on temperature distribution,phase-change process and heat transfer performance were studied.The result indicates:During heat storage process,the temperature increases rapidly and the melting process is accelerated for the position closer surrounding rock.CaCl_(2)·6H_(2)O/EG can make filling body complete heat storage process in the shortest time because of its good thermal diffusivity.The heat storage capacity of PCMs backfill is significantly higher than that of ordinary backfill;it increases by 36.6%-67.3%at heat storage of 10 h.During heat release process,the closer to the heat exchange tube,the greater the temperature drop in filling body.The maximum value of heat release rate and heat release capacity is in CaCl_(2)·6H_(2)O/EG backfill,it can release 116.4%more heat than RT35backfill after heat release of 12 h,the maximum value of effectiveness and its heat transfer rate also is in CaCl_(2)·6H_(2)O/EG backfill.This paper provides the basic data for the selection of PCMs in phase-change thermal storage filling body.展开更多
Programmed release of small molecular drugs from polymersomes is of great importance in drug delivery.A significant challenge is to adjust the membrane permeability in a well-controlled manner.Herein,we propose a stra...Programmed release of small molecular drugs from polymersomes is of great importance in drug delivery.A significant challenge is to adjust the membrane permeability in a well-controlled manner.Herein,we propose a strategy for controlling membrane phase separation by photo-cross-linking of the membrane-forming blocks with different molecular architectures.We synthesized three amphiphilic block copolymers with different membrane-forming blocks,which are poly(ethylene oxide)_(43)-b-poly((ε-caprolactone)_(45)-stat-((α-(cinnamoyloxymethyl)-1,2,3-triazol)caprolactone)_(25))(PEO_(43)-b-P(CL_(45)-stat-CTCL_(25))),PEO_(43)-b-P(CL_(108)-stat-CTCL_(16)),and PEO_(43)-b-PCTCL_(4)-b-PCL_(79).These polymers were self-assembled into polymersomes using either a solvent-switch or powder rehydration method,and the obtained polymersomes were characterized by dynamic light scattering and transmission electron microscopy.Then the phase separation patterns within the polymersome membranes were investigated by mesoscopic dynamics(MesoDyn)simulations.To further confirm the change of the membrane permeability that resulted from the phase separation within the membrane,doxorubicin,as a small molecular drug,was loaded and released from the polymersomes.Due to the incompatibility between membrane-forming moieties(PCTCL and PCL),phase separation occurs and the release rate can be tuned by controlling the membrane phase pattern or by photo-cross-linking.Moreover,besides the compacting effect by formation of chemical bonds in the membrane,the cross-linking process can act as a driving force to facilitate the rearrangement and re-orientation of the phase pattern,which also influences the drug release behavior by modulating the cross-membrane distribution of the amorphous PCTCL moieties.In this way,the strategy of focusing on the membrane phase separation for the preparation of the polymersomes with finely tunable drug release rate can be envisioned and designed accordingly,which is of great significance in the field of delivery vehicles for pr展开更多
Photothermal therapy(PTT)is a treatment that increases the temperature of tumors to 42–48℃,or even higher for tumor ablation.PTT has sparked a lot of attention due to its ability to induce apoptosis or increase sens...Photothermal therapy(PTT)is a treatment that increases the temperature of tumors to 42–48℃,or even higher for tumor ablation.PTT has sparked a lot of attention due to its ability to induce apoptosis or increase sensitivity to chemotherapy.Excessive heat not only kills the tumor cells,but also damages the surrounding healthy tissue,reducing therapeutic accuracy and increasing the possible side effects.Herein,a phase change fiber(PCF)scaffold serving as a thermal trigger in mild photothermal–chemo tumor therapy is developed to regulate temperature and control drug release.These prepared PCFs,comprised of hollow carbon fibers(HCFs)loaded with lauric acid as a phase change material(PCM),can effectively store and release any excess heat generated by irradiating with a near-infrared(NIR)laser through the reversible solid–liquid transition process of the PCM.With this feature,the optimal PTT temperature of implanted PCF-based composite scaffolds was identified for tumor therapy with minimal normal tissue damage.In addition,controlled release of chemotherapeutic drugs and heat shock protein(HSP)inhibitors from the PCF-based composite scaffolds have been shown to improve the efficacy of mild PTT.The developed PCF-based scaffold sheds light on the development of a new generation of therapeutic scaffolds for thermal therapy.展开更多
Design of biocompatible and biodegradable polymer systems for sustained and controlled release of bioactive agents is critical for numerous biomedical applications. Here, we designed, synthesized, and char- acterized ...Design of biocompatible and biodegradable polymer systems for sustained and controlled release of bioactive agents is critical for numerous biomedical applications. Here, we designed, synthesized, and char- acterized four polyurethane carrier systems for controlled release of model drugs. These polyurethanes are biocom- patible and biodegradable because they consist of biocompatible poly(ethylene glycol) or poly(caprolactone diol) as soft segment, linear aliphatic hexamethylene diisocyanate or symmetrical aliphatic cyclic dicyclohex- ylmethane-4,4'-diisocyanate as hard segment, and biode- gradable urethane linkage. They were characterized with Fourier transform infrared spectroscopy, atomic force microscope, and differential scanning calorimetry, whereas their degradation behaviors were investigated in both phosphate buffered saline and enzymatic solutions. By tuning polyurethane segments, different release profiles of hydrophobic and hydrophilic drugs were obtained in the absence and presence of enzymes. Such difference in release profiles was attributed to a complex interplay among structure, hydrophobicity, and degradability of polyurethanes, the size and hydrophobicity of drugs, and drug-polymer interactions. Different drug-polyurethane combinations modulated the distribution and location of the drugs in polymer matrix, thus inducing different drug release mechanisms. Our results highlight an important role of segmental structure of the polyurethane as an engineering tool to control drug release.展开更多
High-voltage LiCoO_(2)(LCO)offers a prelude to breaking the bottleneck of the energy density of lithium-ion batteries,however,LiCoO_(2)is subject to serious structural and interfacial degradation above voltages>4.5...High-voltage LiCoO_(2)(LCO)offers a prelude to breaking the bottleneck of the energy density of lithium-ion batteries,however,LiCoO_(2)is subject to serious structural and interfacial degradation above voltages>4.55 V(vs.Li/Li^(+)).Herein,an in-situ Li_(6.25)La_(3)Zr_(2)A_(l0.25)O_(12)(LLZAO)layer is constructed on the LCO surface to achieve operating voltage at 4.6 V.The detailed characterizations(ex-situ XRD,ex-situ Raman,DFT,etc.)reveal that the LLZAO layer greatly enhances Li+conductivity attributed to the ionconducting layer on the surface/interface,and closely combines with LiCoO_(2)particle to ensure stable cathode/electrolyte interface,thus suppressing the highly reactive Co^(4+)and O^(-)triggered surface side reactions at high-voltage.Moreover,the introduction of La^(3+)/Zr^(4+)/Al^(3+)with a larger ionic radius(La^(3+)/Zr^(4+)are larger than Co^(3+))and weaker electronegativity(La/Zr/Al are weaker than Co)into Co^(3+)sites readjusts the electron cloud density between Co–O–Li,which reinforces the Co–O bond and widens the band-center gap of Co 3d and O 2p,thus restraining the detrimental phase transition(from H3 to H1-3 phase)and the formation of Co_(3)O_(4)spinel phase(attributed to lattice oxygen release),subsequently alleviating the particle cracking and structural collapse during repeated Li^(+)de/intercalation.Therefore,after 100 cycles at 3.0–4.6 V,LCO@1.0LLZAO exhibits a superior discharge capacity of 188.5 m A h g^(-1),with a capacity retention of 85.1%.The above research has brought about meaningful guidance for the evolution of cathode materials with high voltage.展开更多
Arsenic trioxide(ATO) combined with all trans retinoic acid(ATRA) is the first choice for the treatment of low and medium risk acute promyelocytic leukemia(APL). Clinical studies reported that the combination of ATO a...Arsenic trioxide(ATO) combined with all trans retinoic acid(ATRA) is the first choice for the treatment of low and medium risk acute promyelocytic leukemia(APL). Clinical studies reported that the combination of ATO and ATRA could achieve a significant curative effect. However, the retinoic acid syndrome, serious drug resistance and the short half-life in vivo which lead to frequent and large dose administration limit the application of ATRA. In addition, the preparations of arsenic are conventional injections and tablets in clinic, which has poor patients’ compliance caused by frequent long-term administration and serious side effects. In order to overcome the above limitations, a phospholipid phase separation gel(PPSG) loaded with ATO and ATRA was developed. ATO + ATRA-PPSG(AAP), as a biodegradable sustained-release delivery system, was the first achievement of co-delivery of hydrophilic ATO and lipophilic ATRA with high drug loading which is the main problem in the application of nano preparation. The prepared PPSG displayed high safety and biocompatibility. The drug in PPSG was released slowly and continuously in vivo and in vitro for up to 10 d, which could reduce the side effects caused by the fluctuation of blood drug concentration and solve the problem of the long treatment cycle and frequent administration. In vivo pharmacokinetics depicted that PPSG could improve the bioavailability, decrease the peak concentration, and prolong the t 1/2 of ATO and ATRA. Particularly, AAP significantly inhibited the tumor volume, extended the survival period of tumor-bearing mice, and promoted the differentiation of APL cells into normal cells. Therefore, ATO + ATRA-PPSG not only could co-load hydrophilic ATO and lipophilic ATRA according to the clinical dosage, but also possessed the sustained-release and long-acting treatment effect which was expected to reduce administration time and ameliorate compliance of patients. Thus, it had great potential for clinical transformation and application.展开更多
基金National Natural Science Foundation of China(Grant No.82002049 and 52073014,to J.X.)Key Program of Beijing Natural Science Foundation(Z200025)+1 种基金Fundamental Research Funds for the Central Universities(buctrc202020)YL thanks support by T.Pipes Nano Microsystem Endowment,Louisiana Tech University,USA.
文摘It is of great importance to treat a bacterial-infected wound by a smart dressing capable of delivering antibiotics in a smart manner without causing drug resistance.The construction of smart release nanocontainers responsive to near-infrared(NIR)laser irradiation in an on-demand and stepwise way is a promising strategy for avoiding the emergence of multidrug-resistant bacteria.Here,we develop a hydrogel composite made of alginate and nanotubes with an efficient NIR-triggered release of rifampicin and outstanding antibacterial ability.This composite hydrogel is prepared through co-encapsulating antibacterial drug(rifampicin),NIR-absorbing dye(indocyanine green),and phase-change materials(a eutectic mixture of fatty acids)into halloysite nanotubes,followed by incorporation into alginate hydrogels,allowing the in-situ gelation at room temperature and maintaining the integrity of drug-loaded nanotubes.Among them,the eutectic mixture with a melting point of 39℃ serves as the biocompatible phase-change material to facilitate the NIR-triggered drug release.The resultant phase-change material gated-nanotubes exhibit a prominent photothermal efficiency with multistep drug release under laser irradiation.In an in vitro assay,composite hydrogel provides good antibacterial potency against Staphylococcus aureus,one of the most prevalent microorganisms of dangerous gas gangrene.A bacterial-infected rat full-thickness wound model demonstrates that the NIR-responsive composite hydrogel inhibits the bacteria colonization and suppresses the inflammatory response caused by bacteria,promoting angiogenesis and collagen deposition to accelerate wound regeneration.The NIR-responsive composite hydrogel has a great po-tential as an antibacterial wound dressing functionalized with controlled multistep treatment of the infected sites.
基金supported by the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(2023yjrc51)the National Natural Science Foundation of China(22172184)+2 种基金the Foundation of State Key Laboratory of Coal Conversion(J24-25-603)the Fundamental Research Project of ICC-CAS(SCJC-DT-2023-01)Weiqiao-UCAS Special Projects on Low-Carbon Technology Development(GYY-DTFZ-2022-015)。
文摘This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investigation in methanol steam reforming(MSR).Various catalysts were prepared under different conditions,such as calcination temperature,calcination atmosphere,and heating rate.Characterization techniques including BET,XRD,XPS,SEM and H2-TPR were employed to analyze the samples.The results revealed significant effects of calcination temperature on the phase compositions,specific surface area,reduction performance,and surface properties of the CA-T catalysts.Based on the findings,a synthesis route of CuAlO_(2) via the solid-phase method was proposed,highlighting the importance of high calcination temperature,nitrogen atmosphere,and low heating rate for CuAlO_(2) formation.Catalytic evaluation data demonstrated that CuAlO_(2) could catalyze MSR without pre-reduction,with the catalytic performance of CA-T catalysts being notably influenced by calcination temperature.Among the prepared catalysts,the CA-1100 catalyst exhibited the highest catalytic activity and stability.The findings of this study might be useful for the further study of the catalytic material for sustained release catalysis,including the synthesis of catalytic materials and the regulation of sustained release catalytic performance.
基金supported by the National Natural Science Foundation of China(Nos.51974225,51674188,51874229,51504182,51904224,51904225,51704229)Shaanxi Innovative Talents Cultivate Program-New-star Plan of Science and Technology(No.2018KJXX-083)+4 种基金Natural Science Basic Research Plan of Shaanxi Province of China(Nos.2018JM5161,2018JQ5183,2015JQ5187,2019JM-074)Scientific Research Program funded by the Shaanxi Provincial Education Department(Nos.15JK1466,19JK0543)China Postdoctoral Science Foundation(No.2015M582685)Outstanding Youth Science Fund of Xi’an University of Science and Technology(No.2018YQ2-01)the Scientific Research Program funded by Xi’an Science and Technology Bureau(No.201805036YD14CG20)。
文摘Arranging heat exchanger in filling body to extract geothermal energy is an effective way to alleviate the problems of high ground pressure and high ground temperature in deep resource exploitation.Filling body with casing heat exchanger was acted as research object,encapsulating phase change materials(PCMs)in annular space.During heat storage and heat release process,the effects of different PCMs on temperature distribution,phase-change process and heat transfer performance were studied.The result indicates:During heat storage process,the temperature increases rapidly and the melting process is accelerated for the position closer surrounding rock.CaCl_(2)·6H_(2)O/EG can make filling body complete heat storage process in the shortest time because of its good thermal diffusivity.The heat storage capacity of PCMs backfill is significantly higher than that of ordinary backfill;it increases by 36.6%-67.3%at heat storage of 10 h.During heat release process,the closer to the heat exchange tube,the greater the temperature drop in filling body.The maximum value of heat release rate and heat release capacity is in CaCl_(2)·6H_(2)O/EG backfill,it can release 116.4%more heat than RT35backfill after heat release of 12 h,the maximum value of effectiveness and its heat transfer rate also is in CaCl_(2)·6H_(2)O/EG backfill.This paper provides the basic data for the selection of PCMs in phase-change thermal storage filling body.
基金financially supported by the National Natural Science Fund for Distinguished Young Scholars (No. 21925505)Shanghai International Scientific Collaboration Fund (No. 21520710100)+2 种基金supported by the National Natural Science Foundation of China (No. 22101207)the China Postdoctoral Science Foundation (No. 2020M671197)International Postdoctoral Exchange Fellowship Program
文摘Programmed release of small molecular drugs from polymersomes is of great importance in drug delivery.A significant challenge is to adjust the membrane permeability in a well-controlled manner.Herein,we propose a strategy for controlling membrane phase separation by photo-cross-linking of the membrane-forming blocks with different molecular architectures.We synthesized three amphiphilic block copolymers with different membrane-forming blocks,which are poly(ethylene oxide)_(43)-b-poly((ε-caprolactone)_(45)-stat-((α-(cinnamoyloxymethyl)-1,2,3-triazol)caprolactone)_(25))(PEO_(43)-b-P(CL_(45)-stat-CTCL_(25))),PEO_(43)-b-P(CL_(108)-stat-CTCL_(16)),and PEO_(43)-b-PCTCL_(4)-b-PCL_(79).These polymers were self-assembled into polymersomes using either a solvent-switch or powder rehydration method,and the obtained polymersomes were characterized by dynamic light scattering and transmission electron microscopy.Then the phase separation patterns within the polymersome membranes were investigated by mesoscopic dynamics(MesoDyn)simulations.To further confirm the change of the membrane permeability that resulted from the phase separation within the membrane,doxorubicin,as a small molecular drug,was loaded and released from the polymersomes.Due to the incompatibility between membrane-forming moieties(PCTCL and PCL),phase separation occurs and the release rate can be tuned by controlling the membrane phase pattern or by photo-cross-linking.Moreover,besides the compacting effect by formation of chemical bonds in the membrane,the cross-linking process can act as a driving force to facilitate the rearrangement and re-orientation of the phase pattern,which also influences the drug release behavior by modulating the cross-membrane distribution of the amorphous PCTCL moieties.In this way,the strategy of focusing on the membrane phase separation for the preparation of the polymersomes with finely tunable drug release rate can be envisioned and designed accordingly,which is of great significance in the field of delivery vehicles for pr
基金The authors thank the financial support from National Key R&D Program of China(No.2017YFC1105003,2021YFB3802700)National Natural Science Foundation of China(No.21807046)+4 种基金Guangdong Project(No.2016ZT06C322)National Natural Science Foundation of Guangdong(No.2020A151501744)Science and Technology Program of Guangzhou(No.202102020759)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515111174)Overseas Expertise Introduction Center for Discipline Innovation(“111 Center”).
文摘Photothermal therapy(PTT)is a treatment that increases the temperature of tumors to 42–48℃,or even higher for tumor ablation.PTT has sparked a lot of attention due to its ability to induce apoptosis or increase sensitivity to chemotherapy.Excessive heat not only kills the tumor cells,but also damages the surrounding healthy tissue,reducing therapeutic accuracy and increasing the possible side effects.Herein,a phase change fiber(PCF)scaffold serving as a thermal trigger in mild photothermal–chemo tumor therapy is developed to regulate temperature and control drug release.These prepared PCFs,comprised of hollow carbon fibers(HCFs)loaded with lauric acid as a phase change material(PCM),can effectively store and release any excess heat generated by irradiating with a near-infrared(NIR)laser through the reversible solid–liquid transition process of the PCM.With this feature,the optimal PTT temperature of implanted PCF-based composite scaffolds was identified for tumor therapy with minimal normal tissue damage.In addition,controlled release of chemotherapeutic drugs and heat shock protein(HSP)inhibitors from the PCF-based composite scaffolds have been shown to improve the efficacy of mild PTT.The developed PCF-based scaffold sheds light on the development of a new generation of therapeutic scaffolds for thermal therapy.
文摘Design of biocompatible and biodegradable polymer systems for sustained and controlled release of bioactive agents is critical for numerous biomedical applications. Here, we designed, synthesized, and char- acterized four polyurethane carrier systems for controlled release of model drugs. These polyurethanes are biocom- patible and biodegradable because they consist of biocompatible poly(ethylene glycol) or poly(caprolactone diol) as soft segment, linear aliphatic hexamethylene diisocyanate or symmetrical aliphatic cyclic dicyclohex- ylmethane-4,4'-diisocyanate as hard segment, and biode- gradable urethane linkage. They were characterized with Fourier transform infrared spectroscopy, atomic force microscope, and differential scanning calorimetry, whereas their degradation behaviors were investigated in both phosphate buffered saline and enzymatic solutions. By tuning polyurethane segments, different release profiles of hydrophobic and hydrophilic drugs were obtained in the absence and presence of enzymes. Such difference in release profiles was attributed to a complex interplay among structure, hydrophobicity, and degradability of polyurethanes, the size and hydrophobicity of drugs, and drug-polymer interactions. Different drug-polyurethane combinations modulated the distribution and location of the drugs in polymer matrix, thus inducing different drug release mechanisms. Our results highlight an important role of segmental structure of the polyurethane as an engineering tool to control drug release.
基金supported by the Chongzuo Science and Technology Program Project Fund(No.FA20210713)。
文摘High-voltage LiCoO_(2)(LCO)offers a prelude to breaking the bottleneck of the energy density of lithium-ion batteries,however,LiCoO_(2)is subject to serious structural and interfacial degradation above voltages>4.55 V(vs.Li/Li^(+)).Herein,an in-situ Li_(6.25)La_(3)Zr_(2)A_(l0.25)O_(12)(LLZAO)layer is constructed on the LCO surface to achieve operating voltage at 4.6 V.The detailed characterizations(ex-situ XRD,ex-situ Raman,DFT,etc.)reveal that the LLZAO layer greatly enhances Li+conductivity attributed to the ionconducting layer on the surface/interface,and closely combines with LiCoO_(2)particle to ensure stable cathode/electrolyte interface,thus suppressing the highly reactive Co^(4+)and O^(-)triggered surface side reactions at high-voltage.Moreover,the introduction of La^(3+)/Zr^(4+)/Al^(3+)with a larger ionic radius(La^(3+)/Zr^(4+)are larger than Co^(3+))and weaker electronegativity(La/Zr/Al are weaker than Co)into Co^(3+)sites readjusts the electron cloud density between Co–O–Li,which reinforces the Co–O bond and widens the band-center gap of Co 3d and O 2p,thus restraining the detrimental phase transition(from H3 to H1-3 phase)and the formation of Co_(3)O_(4)spinel phase(attributed to lattice oxygen release),subsequently alleviating the particle cracking and structural collapse during repeated Li^(+)de/intercalation.Therefore,after 100 cycles at 3.0–4.6 V,LCO@1.0LLZAO exhibits a superior discharge capacity of 188.5 m A h g^(-1),with a capacity retention of 85.1%.The above research has brought about meaningful guidance for the evolution of cathode materials with high voltage.
基金the Science and Technology Commission of Shanghai Municipality(20S11902600)。
文摘Arsenic trioxide(ATO) combined with all trans retinoic acid(ATRA) is the first choice for the treatment of low and medium risk acute promyelocytic leukemia(APL). Clinical studies reported that the combination of ATO and ATRA could achieve a significant curative effect. However, the retinoic acid syndrome, serious drug resistance and the short half-life in vivo which lead to frequent and large dose administration limit the application of ATRA. In addition, the preparations of arsenic are conventional injections and tablets in clinic, which has poor patients’ compliance caused by frequent long-term administration and serious side effects. In order to overcome the above limitations, a phospholipid phase separation gel(PPSG) loaded with ATO and ATRA was developed. ATO + ATRA-PPSG(AAP), as a biodegradable sustained-release delivery system, was the first achievement of co-delivery of hydrophilic ATO and lipophilic ATRA with high drug loading which is the main problem in the application of nano preparation. The prepared PPSG displayed high safety and biocompatibility. The drug in PPSG was released slowly and continuously in vivo and in vitro for up to 10 d, which could reduce the side effects caused by the fluctuation of blood drug concentration and solve the problem of the long treatment cycle and frequent administration. In vivo pharmacokinetics depicted that PPSG could improve the bioavailability, decrease the peak concentration, and prolong the t 1/2 of ATO and ATRA. Particularly, AAP significantly inhibited the tumor volume, extended the survival period of tumor-bearing mice, and promoted the differentiation of APL cells into normal cells. Therefore, ATO + ATRA-PPSG not only could co-load hydrophilic ATO and lipophilic ATRA according to the clinical dosage, but also possessed the sustained-release and long-acting treatment effect which was expected to reduce administration time and ameliorate compliance of patients. Thus, it had great potential for clinical transformation and application.