YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some interm...YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some intermediate phases, including θ-Al2O3, YAM and YAP, are formed when calcining polyacrylamide gel, however, the pure YAG phase can be formed directly when calcining polyacrylamide gel with α-Al2O3 as seed crystal. These facts show that the existence of α- Al2O3 seed crystal can block the formation of θ-Al2O3, YAM and YAP, and accelerate its reaction with Y2O3 to form YAG phase directly at lower temperature. The emission peak of prepared YAG : Ce^3 + phosphor is wide with maximum at 550 nm and the exitation band has two peaks, the major one is around at 460 nm, which matches the blue emission of GaN LED and is suitable for the assemble of white LED. Some fluxes can enhance the photoluminescence intensity of phosphor particles, that can be attributed both to the improvement of crystallization processes of YAG and to the stabilization of trivalence cerium ion in YAG:Ce^3 +.展开更多
Powder metallurgic Ti2 AlNb alloys with W addition are sintered at 900, 1000, 1070 °C,and 1150 °C(i.e., in the O + B2, a_2+ B2 + O, a_2+ B2, and single B2 phase regions, respectively)for 12 h, followed by wa...Powder metallurgic Ti2 AlNb alloys with W addition are sintered at 900, 1000, 1070 °C,and 1150 °C(i.e., in the O + B2, a_2+ B2 + O, a_2+ B2, and single B2 phase regions, respectively)for 12 h, followed by water quenching and furnace cooling. Comparisons of phase and microstructure between quenched and furnace-cooled W-modified alloys are carried out to illustrate the phase transformation and microstructure evolution during the cooling process. Furthermore, a comparison is also made between W-modified and W-free alloys, to reveal the function of the W alloying.W addition accelerates the solutions of a_2 and O phases during the high-temperature holding, and a Widmannsta¨tten B2 + O structure, which contributes to the properties, is induced by furnace cooling from all the phase regions. The Widmannsta¨tten structure includes a B2 matrix, primary O, and secondary O precipitates. However, W alloying refines the Widmannsta¨tten structure only when the alloys are solution-treated and then cooled from the single B2 phase. Although the hardness of the W-modified alloys is lower than that of the W-free alloys sintered in the same phase region, an enhancement of hardness, 489 ± 18 HV, is obtained in the alloy solution-treated in the single B2 phase region for only 0.5 h.展开更多
Electron Beam Welding (EBW) is employed to both melt and unite materials, influencing their thermal history and subsequently determining the microstructure and properties of the welded joint. Welding Titanium alloys i...Electron Beam Welding (EBW) is employed to both melt and unite materials, influencing their thermal history and subsequently determining the microstructure and properties of the welded joint. Welding Titanium alloys involves undergoing local melting and rapid solidification, subjecting the material to thermal stresses induced by a thermal expansion coefficient of 9.5 × 10 m/m°C. This process, reaching range temperatures from the full melting alloy to room temperature, results in phase formation dictated by the thermodynamic preferences of the alloyed elements, posing a significant challenge. Recent efforts in simulation and calculations have been undertaken elsewhere to address this challenge. This study focuses on a joint of two plates with differing cross-sectional areas, influencing heat transfer during welding. This report presents a case study focusing on the metallurgical changes observed in the microstructure within the welded zone, emphasizing alterations in the cooling rate of the welded joint. The investigation utilizes optical metallography, Vickers’s Hardness testing, and SEM (scanning electron microscopy) to comprehensively characterize the observed changes in addition to heat transfer simulation of the welded zone.展开更多
The effect of wheel speed on phase formation and magnetic properties of (Ndo.4La0.6)lsFeTzsBzs and (Ndo.4La0.6)13.4Fe79.9B6.7 ribbons prepared by melt-spinning method was investigated experimentally. Based on X-ra...The effect of wheel speed on phase formation and magnetic properties of (Ndo.4La0.6)lsFeTzsBzs and (Ndo.4La0.6)13.4Fe79.9B6.7 ribbons prepared by melt-spinning method was investigated experimentally. Based on X-ray diffraction results, all melt-spun ribbons consist of the main phase with the tetragonal 2:14:1 type structure and the minor α-Fe phase. Magnetic measurements show the maximum magnetic energy product ((BH)max) and the remanence (Mr) increases firstly and then decreases with the increase of wheel speed, while the coercivity (Hci) increases, resulting from the variation of the average volume fraction of the ^-Fe phase and the average grain size in the melt-spun ribbons. Using Henkel plots, the interaction between the 2:14:1 phase and the ^-Fe phase in the melt-spun ribbons was analyzed and the intergranular exchange coupling is manifested. Optimal magnetic properties of Hci - 7.27 kOe, Mr - 90.94 emu/g and (BH)max -- 12.10 MGOe are achieved in the (Ndo.4La0.6)lsFeTzsBT.s ribbon with the wheel speed of 26 m/s. It indicates that magnetic properties of Nd-Fe-B melt-spun ribbons with highly abundant rare earth element La can be improved by optimizing alloy composition and preparation process.展开更多
A series of new Cr-Mn-Fe-V-Cu high-entropy alloys were prepared by arc melting and suction casting.It is found that with the addition of Cu, the structure of the alloys evolved from BCC + BCC1 phases to BCC + FCC ph...A series of new Cr-Mn-Fe-V-Cu high-entropy alloys were prepared by arc melting and suction casting.It is found that with the addition of Cu, the structure of the alloys evolved from BCC + BCC1 phases to BCC + FCC phases. With increase of Cu, the volume fraction of the Cu-Mn-rich FCC phase increased, and the morphology of the FCC phase transformed from granular particles to long strips and blocks. Compared with other reported HEAs, the Cr-Mn-Fe-V-Cu HEAs exhibit a good balance between strength and ductility. The CrMn0.3 FeVCu0.06 alloy with granular FCC particles exhibits the highest compressive yield strength(1273 MPa) and excellent ductility(εf= 50.7%). Quantitative calculations for different strengthening mechanisms demonstrate that dislocation and precipitate strengthening are responsible for high strength of the CrMn0.3 FeVCu0.06 alloy, while the solid solution strengthening effect is very low because of its small atomic-size difference. In addition, the CrMn0.3 FeVCu0.06 alloy exhibits good damping capacity due to its high dislocation and interface damping effects. Therefore, the dislocation density and distribution of FCC phase are the crucial factors for improvement of both mechanical properties and damping capacity of the HEAs.展开更多
The melt-spun SmFe_(12)B_x(x = 0, 0.50, 0.75,1.00, 1.25 and 1.50) ribbons were prepared at 40 m·s^(-1),and their structure and magnetic properties were studied by powder X-ray diffraction(XRD), vibrating sample m...The melt-spun SmFe_(12)B_x(x = 0, 0.50, 0.75,1.00, 1.25 and 1.50) ribbons were prepared at 40 m·s^(-1),and their structure and magnetic properties were studied by powder X-ray diffraction(XRD), vibrating sample magnetometer(VSM) and transmission electron microscopy(TEM). XRD results indicate that SmFe_(12)B_x alloys with 0.50 ≤ x ≤ 1.00 are composed of single-phase TbCu_7-type structure. Moreover, it is found that the boron addition can inhibit the emergence of soft magnetic phase a-Fe and result in the increase in the axial ratio c/a. After annealing at 650 ℃ for 0.5 h, the metastable phase TbCu_7 initially decomposes into the stable phase Sm_2Fe_(14)B(Nd_2Fe_(14)B-type) and a-Fe. The value of magnetic moment per Fe atom increases slightly from 1.75 uB for boron-free sample to 1.80 uB for the x = 0.75 sample and then decreases again.In addition, the best magnetic properties of maximum energy product [(BH)_(max)] of 14.56 kJ·m^(-3), coercivity(H_(cj))of 172.6 kA·m^(-1) and remanence(B_r) of 0.45 T are obtained for the SmFe_(12)B_(1.00) alloy. Based on transmission electron microscopy(TEM) results, the average size of grains is around 197 nm for B-free sample and decreases to 95 nm for x = 1.00 sample, indicating that the addition of boron can refine grains.展开更多
Bulk metallic glass matrix composites have emerged as a new potential material for structural engineering applications owing to their superior strength, hardness and high elastic strain limit. However, their behaviour...Bulk metallic glass matrix composites have emerged as a new potential material for structural engineering applications owing to their superior strength, hardness and high elastic strain limit. However, their behaviour is dubious. They manifest brittleness and inferior ductility which limit their applications. Various methods have been proposed to overcome this problem. Out of these, introduction of foreign particles (inoculants) during solidification has been proposed as the most effective. In this study, an effort has been made to delimit this drawback. A systematic tale has been presented which explains the evolution of microstructure in Zr47.5Cu45.5Al5Co2 and Zr65Cu15Al10Ni10 bulk metallic glass matrix composites with varying percentage of ZrC inoculant as analysed by secondary electron, back scatter electron imaging of “as cast” unetched samples and indentation microhardness testing. Secondary electron imaging of indents was also performed which shows development of shear transformation zones at edges of square of indents. Mostly, no cracking was observed, few cracks bearing Palmqvist morphology were witnessed in samples containing lower percentage of inoculant. A support is provided to hypothesis that inoculations remain successful in promoting phase formation and crystallinity and improving toughness.展开更多
The tribological properties especially wear and hardness of a Ti-Al-V alloy with nitrogen implantation (energy 60 keV) were investigated. The implantation was carried out at fluences range from 1×1016 to 4×1...The tribological properties especially wear and hardness of a Ti-Al-V alloy with nitrogen implantation (energy 60 keV) were investigated. The implantation was carried out at fluences range from 1×1016 to 4×1017 ions/cm2. Glancing angle X-ray diffraction (GAXRD) and X-ray photoelectron spectroscopy (XPS) analyses were performed to obtain surface characterization of the implanted sample. The unimplanted and implanted samples were also annealed at 600 ℃ in order to understand the influence of annealing on the tribological properties of Ti-Al-V. The hardness shows significant improvement at the higher fluence. After annealing at 600 ℃, the friction coefficient exhibits a relative decrease for the nitrogen-implanted samples. In addition, the wear rates of the implanted samples exhibits a great decrease after annealing at 600 ℃. Nature of the surface and reason for the variation and improvement in wear resistance were discussed in detail.展开更多
文摘YAG: Ce^3 + phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some intermediate phases, including θ-Al2O3, YAM and YAP, are formed when calcining polyacrylamide gel, however, the pure YAG phase can be formed directly when calcining polyacrylamide gel with α-Al2O3 as seed crystal. These facts show that the existence of α- Al2O3 seed crystal can block the formation of θ-Al2O3, YAM and YAP, and accelerate its reaction with Y2O3 to form YAG phase directly at lower temperature. The emission peak of prepared YAG : Ce^3 + phosphor is wide with maximum at 550 nm and the exitation band has two peaks, the major one is around at 460 nm, which matches the blue emission of GaN LED and is suitable for the assemble of white LED. Some fluxes can enhance the photoluminescence intensity of phosphor particles, that can be attributed both to the improvement of crystallization processes of YAG and to the stabilization of trivalence cerium ion in YAG:Ce^3 +.
基金the National Natural Science Foundation of China(Grant Nos.51474156 and U1660201)the National High Technology Research and Development Program(‘‘863" Program)of China(Grant No.2015AA042504)for financial support
文摘Powder metallurgic Ti2 AlNb alloys with W addition are sintered at 900, 1000, 1070 °C,and 1150 °C(i.e., in the O + B2, a_2+ B2 + O, a_2+ B2, and single B2 phase regions, respectively)for 12 h, followed by water quenching and furnace cooling. Comparisons of phase and microstructure between quenched and furnace-cooled W-modified alloys are carried out to illustrate the phase transformation and microstructure evolution during the cooling process. Furthermore, a comparison is also made between W-modified and W-free alloys, to reveal the function of the W alloying.W addition accelerates the solutions of a_2 and O phases during the high-temperature holding, and a Widmannsta¨tten B2 + O structure, which contributes to the properties, is induced by furnace cooling from all the phase regions. The Widmannsta¨tten structure includes a B2 matrix, primary O, and secondary O precipitates. However, W alloying refines the Widmannsta¨tten structure only when the alloys are solution-treated and then cooled from the single B2 phase. Although the hardness of the W-modified alloys is lower than that of the W-free alloys sintered in the same phase region, an enhancement of hardness, 489 ± 18 HV, is obtained in the alloy solution-treated in the single B2 phase region for only 0.5 h.
文摘Electron Beam Welding (EBW) is employed to both melt and unite materials, influencing their thermal history and subsequently determining the microstructure and properties of the welded joint. Welding Titanium alloys involves undergoing local melting and rapid solidification, subjecting the material to thermal stresses induced by a thermal expansion coefficient of 9.5 × 10 m/m°C. This process, reaching range temperatures from the full melting alloy to room temperature, results in phase formation dictated by the thermodynamic preferences of the alloyed elements, posing a significant challenge. Recent efforts in simulation and calculations have been undertaken elsewhere to address this challenge. This study focuses on a joint of two plates with differing cross-sectional areas, influencing heat transfer during welding. This report presents a case study focusing on the metallurgical changes observed in the microstructure within the welded zone, emphasizing alterations in the cooling rate of the welded joint. The investigation utilizes optical metallography, Vickers’s Hardness testing, and SEM (scanning electron microscopy) to comprehensively characterize the observed changes in addition to heat transfer simulation of the welded zone.
基金Project supported by the National Basic Research Program of China(973 Program)(2014CB643703)the National Key Research and Development Program of China(2016YFB0700901)+1 种基金the National Natural Science Foundation of China(51761008,51461013)the Guangxi Natural Science Foundation(2016GXNSFDA380015,2016GXNSFGA380001)
文摘The effect of wheel speed on phase formation and magnetic properties of (Ndo.4La0.6)lsFeTzsBzs and (Ndo.4La0.6)13.4Fe79.9B6.7 ribbons prepared by melt-spinning method was investigated experimentally. Based on X-ray diffraction results, all melt-spun ribbons consist of the main phase with the tetragonal 2:14:1 type structure and the minor α-Fe phase. Magnetic measurements show the maximum magnetic energy product ((BH)max) and the remanence (Mr) increases firstly and then decreases with the increase of wheel speed, while the coercivity (Hci) increases, resulting from the variation of the average volume fraction of the ^-Fe phase and the average grain size in the melt-spun ribbons. Using Henkel plots, the interaction between the 2:14:1 phase and the ^-Fe phase in the melt-spun ribbons was analyzed and the intergranular exchange coupling is manifested. Optimal magnetic properties of Hci - 7.27 kOe, Mr - 90.94 emu/g and (BH)max -- 12.10 MGOe are achieved in the (Ndo.4La0.6)lsFeTzsBT.s ribbon with the wheel speed of 26 m/s. It indicates that magnetic properties of Nd-Fe-B melt-spun ribbons with highly abundant rare earth element La can be improved by optimizing alloy composition and preparation process.
基金support with testing materials and facilities from the Interdisciplinary Research Center for Advanced Structural and Biomaterials, Beihang University
文摘A series of new Cr-Mn-Fe-V-Cu high-entropy alloys were prepared by arc melting and suction casting.It is found that with the addition of Cu, the structure of the alloys evolved from BCC + BCC1 phases to BCC + FCC phases. With increase of Cu, the volume fraction of the Cu-Mn-rich FCC phase increased, and the morphology of the FCC phase transformed from granular particles to long strips and blocks. Compared with other reported HEAs, the Cr-Mn-Fe-V-Cu HEAs exhibit a good balance between strength and ductility. The CrMn0.3 FeVCu0.06 alloy with granular FCC particles exhibits the highest compressive yield strength(1273 MPa) and excellent ductility(εf= 50.7%). Quantitative calculations for different strengthening mechanisms demonstrate that dislocation and precipitate strengthening are responsible for high strength of the CrMn0.3 FeVCu0.06 alloy, while the solid solution strengthening effect is very low because of its small atomic-size difference. In addition, the CrMn0.3 FeVCu0.06 alloy exhibits good damping capacity due to its high dislocation and interface damping effects. Therefore, the dislocation density and distribution of FCC phase are the crucial factors for improvement of both mechanical properties and damping capacity of the HEAs.
基金financially supported by the National Natural Science Foundation of China (No. 51401028)
文摘The melt-spun SmFe_(12)B_x(x = 0, 0.50, 0.75,1.00, 1.25 and 1.50) ribbons were prepared at 40 m·s^(-1),and their structure and magnetic properties were studied by powder X-ray diffraction(XRD), vibrating sample magnetometer(VSM) and transmission electron microscopy(TEM). XRD results indicate that SmFe_(12)B_x alloys with 0.50 ≤ x ≤ 1.00 are composed of single-phase TbCu_7-type structure. Moreover, it is found that the boron addition can inhibit the emergence of soft magnetic phase a-Fe and result in the increase in the axial ratio c/a. After annealing at 650 ℃ for 0.5 h, the metastable phase TbCu_7 initially decomposes into the stable phase Sm_2Fe_(14)B(Nd_2Fe_(14)B-type) and a-Fe. The value of magnetic moment per Fe atom increases slightly from 1.75 uB for boron-free sample to 1.80 uB for the x = 0.75 sample and then decreases again.In addition, the best magnetic properties of maximum energy product [(BH)_(max)] of 14.56 kJ·m^(-3), coercivity(H_(cj))of 172.6 kA·m^(-1) and remanence(B_r) of 0.45 T are obtained for the SmFe_(12)B_(1.00) alloy. Based on transmission electron microscopy(TEM) results, the average size of grains is around 197 nm for B-free sample and decreases to 95 nm for x = 1.00 sample, indicating that the addition of boron can refine grains.
文摘Bulk metallic glass matrix composites have emerged as a new potential material for structural engineering applications owing to their superior strength, hardness and high elastic strain limit. However, their behaviour is dubious. They manifest brittleness and inferior ductility which limit their applications. Various methods have been proposed to overcome this problem. Out of these, introduction of foreign particles (inoculants) during solidification has been proposed as the most effective. In this study, an effort has been made to delimit this drawback. A systematic tale has been presented which explains the evolution of microstructure in Zr47.5Cu45.5Al5Co2 and Zr65Cu15Al10Ni10 bulk metallic glass matrix composites with varying percentage of ZrC inoculant as analysed by secondary electron, back scatter electron imaging of “as cast” unetched samples and indentation microhardness testing. Secondary electron imaging of indents was also performed which shows development of shear transformation zones at edges of square of indents. Mostly, no cracking was observed, few cracks bearing Palmqvist morphology were witnessed in samples containing lower percentage of inoculant. A support is provided to hypothesis that inoculations remain successful in promoting phase formation and crystallinity and improving toughness.
文摘The tribological properties especially wear and hardness of a Ti-Al-V alloy with nitrogen implantation (energy 60 keV) were investigated. The implantation was carried out at fluences range from 1×1016 to 4×1017 ions/cm2. Glancing angle X-ray diffraction (GAXRD) and X-ray photoelectron spectroscopy (XPS) analyses were performed to obtain surface characterization of the implanted sample. The unimplanted and implanted samples were also annealed at 600 ℃ in order to understand the influence of annealing on the tribological properties of Ti-Al-V. The hardness shows significant improvement at the higher fluence. After annealing at 600 ℃, the friction coefficient exhibits a relative decrease for the nitrogen-implanted samples. In addition, the wear rates of the implanted samples exhibits a great decrease after annealing at 600 ℃. Nature of the surface and reason for the variation and improvement in wear resistance were discussed in detail.