The El Nifio-Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific Oceanatmosphere interactions. In this paper, an asymptotic method of solving the nonlinear equation for the ENSO...The El Nifio-Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific Oceanatmosphere interactions. In this paper, an asymptotic method of solving the nonlinear equation for the ENSO model is used. And based on a class of oscillator of ENSO model, the approximate solution of a corresponding problem is studied by employing the perturbation method. Firstly, an ENSO model of nonlinear time delay equation of equatorial Pacific is introduced, Secondly, by using the perturbed method, the zeroth and first order asymptotic perturbed solutions are constructed. Finally, from the comparison of the values for a figure, it is seen that the first asymptotic perturbed solution using the perturbation method has a good accuracy. And it is proved from the results that the perturbation method can be used as an analytic operation for the sea surface temperature anomaly in the equatorial Pacific of the atmosphere-ocean oscillation for the ENSO model.展开更多
对含有两个时滞参数、受简谐激励作用下的van der Pol-Duffing方程进行了研究,着重研究了时滞参数对该类参数激励系统的主共振的分岔响应控制.首先采用摄动法从理论上推导出时滞动力系统的分岔响应方程,用奇异性理论得到了退化余维一分...对含有两个时滞参数、受简谐激励作用下的van der Pol-Duffing方程进行了研究,着重研究了时滞参数对该类参数激励系统的主共振的分岔响应控制.首先采用摄动法从理论上推导出时滞动力系统的分岔响应方程,用奇异性理论得到了退化余维一分岔和余维二分岔的条件,以及Hopf分岔的存在性及发生该分岔的条件,最后用数值模拟的方法研究了时滞参数对系统分岔响应的影响.研究结果表明,适当选取时滞参数,不仅可以改变分岔响应曲线的拓扑形态,还可以改变分岔点的位置.展开更多
In this paper, a new analytical method for vibration analysis of a cracked simply supported beam is investigated. By considering a nonlinear model for the fatigue crack, the governing equation of motion of the cracked...In this paper, a new analytical method for vibration analysis of a cracked simply supported beam is investigated. By considering a nonlinear model for the fatigue crack, the governing equation of motion of the cracked beam is solved using perturbation method. The solution of the governing equation reveals the superhaxmonics of the fundamental frequency due to the nonlinear effects in the dynamic response of the cracked beam. Furthermore, considering such a solution, an explicit expression is also derived for the system damping changes due to the changes in the crack parameters, geometric dimensions and mechanical properties of the cracked beam. The results show that an increase in the crack severity and approaching the crack location to the middle of the beam increase the system damping. In order to validate the results, changes in the fundamental frequency ratios against the fatigue crack severities are compared with those of experimental results available in the literature. Also, a comparison is made between the free response of the cracked beam with a given crack depth and location obtained by the proposed analytical solution and that of the numerical method. The results of the proposed method agree with the experimental and numerical results.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 40676016 and 10471039)the State KeyProgram for Basic Research of China (Grant Nos 2003CB415101-03 and 2004CB418304)+2 种基金the Key Project of the Chinese Academy of Sciences (Grant No KZCX3-SW-221)in partly by E-Institutes of Shanghai Municipal Education Commission (Grant NoN.E03004)the Natural Science Foundation of Zhejiang Province,China (Grant No Y606268)
文摘The El Nifio-Southern Oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific Oceanatmosphere interactions. In this paper, an asymptotic method of solving the nonlinear equation for the ENSO model is used. And based on a class of oscillator of ENSO model, the approximate solution of a corresponding problem is studied by employing the perturbation method. Firstly, an ENSO model of nonlinear time delay equation of equatorial Pacific is introduced, Secondly, by using the perturbed method, the zeroth and first order asymptotic perturbed solutions are constructed. Finally, from the comparison of the values for a figure, it is seen that the first asymptotic perturbed solution using the perturbation method has a good accuracy. And it is proved from the results that the perturbation method can be used as an analytic operation for the sea surface temperature anomaly in the equatorial Pacific of the atmosphere-ocean oscillation for the ENSO model.
文摘对含有两个时滞参数、受简谐激励作用下的van der Pol-Duffing方程进行了研究,着重研究了时滞参数对该类参数激励系统的主共振的分岔响应控制.首先采用摄动法从理论上推导出时滞动力系统的分岔响应方程,用奇异性理论得到了退化余维一分岔和余维二分岔的条件,以及Hopf分岔的存在性及发生该分岔的条件,最后用数值模拟的方法研究了时滞参数对系统分岔响应的影响.研究结果表明,适当选取时滞参数,不仅可以改变分岔响应曲线的拓扑形态,还可以改变分岔点的位置.
文摘In this paper, a new analytical method for vibration analysis of a cracked simply supported beam is investigated. By considering a nonlinear model for the fatigue crack, the governing equation of motion of the cracked beam is solved using perturbation method. The solution of the governing equation reveals the superhaxmonics of the fundamental frequency due to the nonlinear effects in the dynamic response of the cracked beam. Furthermore, considering such a solution, an explicit expression is also derived for the system damping changes due to the changes in the crack parameters, geometric dimensions and mechanical properties of the cracked beam. The results show that an increase in the crack severity and approaching the crack location to the middle of the beam increase the system damping. In order to validate the results, changes in the fundamental frequency ratios against the fatigue crack severities are compared with those of experimental results available in the literature. Also, a comparison is made between the free response of the cracked beam with a given crack depth and location obtained by the proposed analytical solution and that of the numerical method. The results of the proposed method agree with the experimental and numerical results.