介观太阳能电池(Mesoscopic Solar Cells)作为新一代太阳能电池的突出代表,具有原材料来源丰富,制备工艺简单,光电转换效率高等优点,从而具有广阔的应用前景.本工作简要评述了全固态介观太阳能电池从染料敏化太阳能电池(Dye-sensitized ...介观太阳能电池(Mesoscopic Solar Cells)作为新一代太阳能电池的突出代表,具有原材料来源丰富,制备工艺简单,光电转换效率高等优点,从而具有广阔的应用前景.本工作简要评述了全固态介观太阳能电池从染料敏化太阳能电池(Dye-sensitized solar cells)发展到钙钛矿太阳能电池(Perovskite solar cells)过程中新材料、新技术和新概念的研究进展.1998年,Gr?tzel课题组首次将固态有机空穴传输材料spiro-OMeTAD应用到染料敏化太阳能电池中,制备出全固态染料敏化太阳能电池,虽然仅获得了0.74%的光电转换效率,但是却使得全固态染料敏化太阳能电池迅速发展成为介观太阳能电池的重要研究方向.2012年,Park与Gr?tzel课题组合作,使用钙钛矿型吸光材料(CH3NH3)PbI3作为敏化剂,spiro-OMeTAD作为空穴收集层,制备出光电转换效率达到9.7%的全固态介观太阳能电池,又被称为钙钛矿太阳能电池.自此,基于钙钛矿材料的介观太阳能电池迅速成为太阳能电池领域的研究热点.目前,钙钛矿太阳能电池的最高公证效率已经达到20.1%.钙钛矿太阳能电池作为介观太阳能电池商业化道路上里程碑式的突破,在材料开发、界面优化以及器件稳定性方面的研究仍充满挑战,也期待新的突破.展开更多
Perovskite solar cells represent a promising third-generation photovoltaic technology with low fabrication cost and high power conversion efficiency.In light of the rapid development of perovskite materials and device...Perovskite solar cells represent a promising third-generation photovoltaic technology with low fabrication cost and high power conversion efficiency.In light of the rapid development of perovskite materials and devices,a systematic survey on the latest advancements covering a broad range of related work is urgently needed.This review summarizes the recent major advances in the research of perovskite solar cells from a material science perspective.The discussed topics include the devices based on different type of perovskites(organic-inorganic hybrid,all-inorganic,and lead-free perovskite and perovskite quantum dots),the properties of perovskite defects,different type of charge transport materials(organic,polymeric,and inorganic hole transport materials and inorganic and organic electron transport materials),counter electrodes,and interfacial materials used to improve the efficiency and stability of devices.Most discussions focus on the key progresses reported within the recent five years.Meanwhile,the major issues limiting the production of perovskite solar cells and the prospects for the future development of related materials are discussed.展开更多
Perovskite oxides with diverse composition and structure have exhibited grand advances in boosting the oxygen reduction and evolution reaction(ORR/OER),which are essential for the reversible protonic ceramic electroch...Perovskite oxides with diverse composition and structure have exhibited grand advances in boosting the oxygen reduction and evolution reaction(ORR/OER),which are essential for the reversible protonic ceramic electrochemical cell(R-PCEC)toward the sustainable hydrogen production and utilization.However,enhancement of their activity and stability remains challenging.Herein,we develop the Ta-regulated BaCo_(0.7)Fe_(0.3)O_(3-δ)perovskite oxygen electrode(Ba(Co_(0.7)Fe_(0.3))_(1-x)Ta_xO_(3-δ))with abundant oxygen defects and achieve the simultaneous enhancement in the electrocatalytic activity and stability toward ORR and OER.As-fabricated R-PCEC with(Ba(Co_(0.7)Fe_(0.3))_(0.9)Ta_(0.1)O_(3-δ))(BCFT10)oxygen electrode performs high power density of 1.47 W·cm^(-2)at 650℃in fuel cell mode,and the current density is up to-2.11 A·cm^(-2)at 1.4 V at 650℃in electrolysis mode,as well as the good stability in both the fuel cell and electrolysis modes.Importantly,the cell also demonstrates a stable cycling operation between fuel cell and electrolysis mode,suggesting a great potential of BCFT10 as oxygen electrode material for R-PCECs.展开更多
Carbon-based perovskite solar cells(C-PSCs)are promising candidates for large-scale photovoltaic applications due to their theoretical low cost and high stability.However,the fabrication of high-performance C-PSCs wit...Carbon-based perovskite solar cells(C-PSCs)are promising candidates for large-scale photovoltaic applications due to their theoretical low cost and high stability.However,the fabrication of high-performance C-PSCs with large-area electrodes remains challenging.In this work,we propose a novel playdough-like graphite putty as top electrode in the perovskite devices.This electrode with soft nature can form good contact with the holetransporting layer and the conductive substrate at room temperature by a simple pressing technique,which facilitates the fabrication of both small-area devices and perovskite solar modules.In this preliminary research,the corresponding small devices and modules can achieve efficiencies of 20.29%(~0.15 cm^(2))and 16.01%(~10 cm^(2)),respectively.Moreover,we analyze the limitations of the optical and electrical properties of this playdough-like graphite electrode on the device performance,suggesting a direction for further improvement of C-PSCs in the future.展开更多
Printable mesoscopic perovskite solar cells(PM-PSCs)possess notable merits in terms of cost-effectiveness,easy manufacturing,and large scale applications.Nevertheless,the absence of a hole transport layer contributes ...Printable mesoscopic perovskite solar cells(PM-PSCs)possess notable merits in terms of cost-effectiveness,easy manufacturing,and large scale applications.Nevertheless,the absence of a hole transport layer contributes to the exacerbation of carrier recombination,and the defects between the perovskite and electron transport layer(ETL)interfaces significantly decrease the efficiency of the devices.In this study,a bifunctional surface passivation approach is proposed by applying a thioacetamide(TAA)surfactant on the mesoporous TiO_(2)interface.The results demonstrate that TAA molecules could interact with TiO_(2),thereby diminishing the oxygen vacancy defects.Additionally,the amino group and sulfur atoms in TAA molecules act as Lewis base to effectively passivate the uncoordinated Pb^(2+)in perovskite and improve the morphology of perovskite,and decrease the trap-state density of perovskite.The TAA passivation mechanism improves the alignment of energy levels between TiO_(2)and perovskite,facilitating electron transport and reducing carrier recombination.Consequently,the TAA-passivated device achieved a champion power conversion efficiency(PCE)of 17.86%with a high fill factor(FF)of 79.16%and an open-circuit voltage(V_(OC))of 0.971 V.This investigation presents a feasible strategy for interfacial passivation of the ETL to further improve the efficiency of PM-PSCs.展开更多
本文报道了一种适应于高效稳定的CO-CO_(2)相互转化的可逆固体氧化物电池(RSOC)相变燃料电极.该燃料电极由FeRu双金属纳米催化剂和Ruddlesden-Popper相Pr_(0.8)Sr_(1.2)Fe_(1-x-y)Ru_(x)Mo_(y)O_(4)氧化物复合而成(FeRu@PSFRM).固体氧...本文报道了一种适应于高效稳定的CO-CO_(2)相互转化的可逆固体氧化物电池(RSOC)相变燃料电极.该燃料电极由FeRu双金属纳米催化剂和Ruddlesden-Popper相Pr_(0.8)Sr_(1.2)Fe_(1-x-y)Ru_(x)Mo_(y)O_(4)氧化物复合而成(FeRu@PSFRM).固体氧化物燃料电池(SOFC)模式时,单电池800℃时的最大输出功率密度可以达到170 W cm^(-2);而在固体氧化物电解池(SOEC)模式下,800℃、1.3 V时电解池的电解电流密度达到-0.256 A cm^(-2).在SOFC-SOEC循环测试过程中,RSOC中CO-CO_(2)相互转化过程经历了“活化-稳定-衰退”三个明显阶段.幸运的是,性能衰退的燃料电极可通过“原位氧化-还原”处理实现性能再生,有效提升该电池的使用寿命.研究结果表明,原位脱溶形成的FeRu@PSFRM材料是一种极具应用潜力的燃料电极候选材料,以期实现高效稳定的CO-CO_(2)相互转化.展开更多
Inorganic CsPbI_(3)perovskite has exhibited great application potential in perovskite solar cells(PSCs)due to its suitable optical bandgap and high chemical stability.However,the perovskite phases of CsPbI_(3)are not ...Inorganic CsPbI_(3)perovskite has exhibited great application potential in perovskite solar cells(PSCs)due to its suitable optical bandgap and high chemical stability.However,the perovskite phases of CsPbI_(3)are not stable at room temperature,where they transition to non-perovskite phases.Humidity or water has been thought to be the primary factor inducing this phase transition,which should be avoided throughout the procedure of film and device processing.Surprisingly,the present study indicates that preparing a precursor solution in humid air is beneficial to the growth of high-quality CsPbI_(3)perovskite to enhance device performance.It is demonstrated that the incorporation of H2O in the precursor solution from humid air or by intentional addition significantly changes the composition of coordination compounds and increases the amount of low iodine coordination complexes.As a result,the crystallization of dimethylammonium lead iodide(DMAPbI_(3))intermediate is suppressed well,which accelerates its subsequent conversion to CsPbI_(3)perovskite.Consequently,an oriented CsPbI_(3)perovskite film with improved crystallinity and lower defect density is obtained.Most importantly,carbon-based PSCs(C-PSCs)based on the CsPbI_(3)perovskite film achieve an efficiency of 16.05%,a new record for inorganic C-PSCs.展开更多
Antimony selenide(Sb_(2)Se_(3))semiconducting material possesses a band gap of 1.05-1.2 eV and has been widely applied in single-junction solar cells.Based on its band gap,Sb_(2)Se_(3)can also be used as the bottom ce...Antimony selenide(Sb_(2)Se_(3))semiconducting material possesses a band gap of 1.05-1.2 eV and has been widely applied in single-junction solar cells.Based on its band gap,Sb_(2)Se_(3)can also be used as the bottom cell absorber material in tandem solar cells.More importantly,Sb_(2)Se_(3)solar cells exhibit excellent stability with nontoxic compositional elements.The band gap of organic-inorganic hybrid perovskite is tunable over a wide range.In this work,we demonstrate for the first time a perovskite/antimony selenide four-terminal tandem solar cell with a specially designed and fabricated transparent electrode for an optimized spectral response.By adjusting the thickness of the transparent electrode layer of the top cell,the wide-band-gap perovskite top solar cell achieves an efficiency of 17.88%,while the optimized antimony selenide bottom cell delivers a power conversion efficiency of 7.85%by introducing a double electron transport layer.Finally,the four-termi-nal tandem solar cell achieves an impressive efficiency exceeding 20%.This work provides a new tandem device structure and demonstrates that antimony selenide is a promising absorber material for bottom cell applications in tandem solar cells.展开更多
Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop...Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop a novel method,extreme heat treatment(EHT),to rapidly fabricate electrodes for SSOC.We show that by using the EHT method,the electrode can be fabricated in seconds(the fastest method to date),benefiting from enhanced reaction kinetics.The EHT-fabricated electrode presents a porous structure and good adhesion with the electrolyte.In contrast,tens of hours are needed to prepare the electrode by the conventional approach,and the prepared electrode exhibits a dense structure with a larger particle size due to the lengthy treatment.The EHT-fabricated electrode shows desirable electrochemical performance.Moreover,we show that the electrocatalytic activity of the perovskite electrode can be tuned by the vigorous approach of fast exsolution,deriving from the increased active sites for enhancing the electrochemical reactions.At 900℃,a promising peak power density of 966 mW cm^(-2)is reached.Our work exploits a new territory to fabricate and develop advanced electrodes for SSOCs in a rapid and high-throughput manner.展开更多
通过改进的自蔓延燃烧法合成制备高熵双钙钛矿SmBa(Mn_(0.2)Fe_(0.2)Co_(0.2)Ni_(0.2)Cu_(0.2))_(2)O_(5+δ)(HE-SBC)阴极材料,并复合10%(摩尔分数)Gd_(2)O_(3)掺杂CeO_(2)(GDC)以优化性能。结果表明:通过B位高熵的方法可以显著减小Co...通过改进的自蔓延燃烧法合成制备高熵双钙钛矿SmBa(Mn_(0.2)Fe_(0.2)Co_(0.2)Ni_(0.2)Cu_(0.2))_(2)O_(5+δ)(HE-SBC)阴极材料,并复合10%(摩尔分数)Gd_(2)O_(3)掺杂CeO_(2)(GDC)以优化性能。结果表明:通过B位高熵的方法可以显著减小Co离子由价态变化而引起的热膨胀,从而降低SmBaCo_(2)O_(5+δ)的热膨胀系数。在800℃,以氧化钇稳定氧化锆(YSZ)为电解质的HE-SBC对称电池的极化阻抗(R_(p))为1.04Ω·cm^(2),阳极支撑单电池的最高功率密度和R_(p)分别为683.53 m W/cm^(2)和0.46Ω·cm^(2)。进一步通过复合GDC(HE-SBC与GDC的质量比7:3)以增加三相界面提高HE-SBC的催化活性,在800℃HE-SBC-GDC复合阴极对称电池的极化阻抗仅为0.09Ω·cm^(2),且阳极支撑单电池的最高功率密度和R_(p)分别为838.66 m W/cm^(2)和0.12Ω·cm^(2)。展开更多
文摘介观太阳能电池(Mesoscopic Solar Cells)作为新一代太阳能电池的突出代表,具有原材料来源丰富,制备工艺简单,光电转换效率高等优点,从而具有广阔的应用前景.本工作简要评述了全固态介观太阳能电池从染料敏化太阳能电池(Dye-sensitized solar cells)发展到钙钛矿太阳能电池(Perovskite solar cells)过程中新材料、新技术和新概念的研究进展.1998年,Gr?tzel课题组首次将固态有机空穴传输材料spiro-OMeTAD应用到染料敏化太阳能电池中,制备出全固态染料敏化太阳能电池,虽然仅获得了0.74%的光电转换效率,但是却使得全固态染料敏化太阳能电池迅速发展成为介观太阳能电池的重要研究方向.2012年,Park与Gr?tzel课题组合作,使用钙钛矿型吸光材料(CH3NH3)PbI3作为敏化剂,spiro-OMeTAD作为空穴收集层,制备出光电转换效率达到9.7%的全固态介观太阳能电池,又被称为钙钛矿太阳能电池.自此,基于钙钛矿材料的介观太阳能电池迅速成为太阳能电池领域的研究热点.目前,钙钛矿太阳能电池的最高公证效率已经达到20.1%.钙钛矿太阳能电池作为介观太阳能电池商业化道路上里程碑式的突破,在材料开发、界面优化以及器件稳定性方面的研究仍充满挑战,也期待新的突破.
基金supported by the National Natural Science Foundation of China(21975264,21925112,21875122,61935016,92056119,61935016,21771008)Beijing Natural Science Foundation(2191003)+1 种基金the Youth Innovation Promotion Association Chinese Academy of Sciences,the National Key Research and Development Project funding from the Ministry of Science and Technology of China(2021YFB3800100,2021YFB3800101,2020YFB1506400)the Basic and Applied Basic Research Foundation of Guangdong Province(2019B1515120083)。
文摘Perovskite solar cells represent a promising third-generation photovoltaic technology with low fabrication cost and high power conversion efficiency.In light of the rapid development of perovskite materials and devices,a systematic survey on the latest advancements covering a broad range of related work is urgently needed.This review summarizes the recent major advances in the research of perovskite solar cells from a material science perspective.The discussed topics include the devices based on different type of perovskites(organic-inorganic hybrid,all-inorganic,and lead-free perovskite and perovskite quantum dots),the properties of perovskite defects,different type of charge transport materials(organic,polymeric,and inorganic hole transport materials and inorganic and organic electron transport materials),counter electrodes,and interfacial materials used to improve the efficiency and stability of devices.Most discussions focus on the key progresses reported within the recent five years.Meanwhile,the major issues limiting the production of perovskite solar cells and the prospects for the future development of related materials are discussed.
基金financially supported by the National Key R&D Program of China(No.2022YFB4002201)the National Natural Science Foundation of China(Nos.52072362 and 52302119)+3 种基金Jilin Province Science and Technology Development Plan Funding Project(Nos.SKL202302039 and 20220201112GX)Jiangsu Province Innovation Support Program(No.BE2023092-2)Youth Innovation Promotion Association CAS(No.2021223)Open Funds of the State Key Laboratory of Rare Earth Resource Utilization(No.RERU2022008)。
文摘Perovskite oxides with diverse composition and structure have exhibited grand advances in boosting the oxygen reduction and evolution reaction(ORR/OER),which are essential for the reversible protonic ceramic electrochemical cell(R-PCEC)toward the sustainable hydrogen production and utilization.However,enhancement of their activity and stability remains challenging.Herein,we develop the Ta-regulated BaCo_(0.7)Fe_(0.3)O_(3-δ)perovskite oxygen electrode(Ba(Co_(0.7)Fe_(0.3))_(1-x)Ta_xO_(3-δ))with abundant oxygen defects and achieve the simultaneous enhancement in the electrocatalytic activity and stability toward ORR and OER.As-fabricated R-PCEC with(Ba(Co_(0.7)Fe_(0.3))_(0.9)Ta_(0.1)O_(3-δ))(BCFT10)oxygen electrode performs high power density of 1.47 W·cm^(-2)at 650℃in fuel cell mode,and the current density is up to-2.11 A·cm^(-2)at 1.4 V at 650℃in electrolysis mode,as well as the good stability in both the fuel cell and electrolysis modes.Importantly,the cell also demonstrates a stable cycling operation between fuel cell and electrolysis mode,suggesting a great potential of BCFT10 as oxygen electrode material for R-PCECs.
基金the financial support from the National Natural Science Foundation of China(91963209 and 52002303).
文摘Carbon-based perovskite solar cells(C-PSCs)are promising candidates for large-scale photovoltaic applications due to their theoretical low cost and high stability.However,the fabrication of high-performance C-PSCs with large-area electrodes remains challenging.In this work,we propose a novel playdough-like graphite putty as top electrode in the perovskite devices.This electrode with soft nature can form good contact with the holetransporting layer and the conductive substrate at room temperature by a simple pressing technique,which facilitates the fabrication of both small-area devices and perovskite solar modules.In this preliminary research,the corresponding small devices and modules can achieve efficiencies of 20.29%(~0.15 cm^(2))and 16.01%(~10 cm^(2)),respectively.Moreover,we analyze the limitations of the optical and electrical properties of this playdough-like graphite electrode on the device performance,suggesting a direction for further improvement of C-PSCs in the future.
基金funded by the Yunnan Yunling Scholars Project,the National Natural Science Foundation of China(No.51562038)the Young-Middle-Aged Academic and Technical Leaders Reserve Talent Project in Yunnan Province(No.202005AC160015)the Yunnan Basic Applied Research Project(No.202101AT070013).
文摘Printable mesoscopic perovskite solar cells(PM-PSCs)possess notable merits in terms of cost-effectiveness,easy manufacturing,and large scale applications.Nevertheless,the absence of a hole transport layer contributes to the exacerbation of carrier recombination,and the defects between the perovskite and electron transport layer(ETL)interfaces significantly decrease the efficiency of the devices.In this study,a bifunctional surface passivation approach is proposed by applying a thioacetamide(TAA)surfactant on the mesoporous TiO_(2)interface.The results demonstrate that TAA molecules could interact with TiO_(2),thereby diminishing the oxygen vacancy defects.Additionally,the amino group and sulfur atoms in TAA molecules act as Lewis base to effectively passivate the uncoordinated Pb^(2+)in perovskite and improve the morphology of perovskite,and decrease the trap-state density of perovskite.The TAA passivation mechanism improves the alignment of energy levels between TiO_(2)and perovskite,facilitating electron transport and reducing carrier recombination.Consequently,the TAA-passivated device achieved a champion power conversion efficiency(PCE)of 17.86%with a high fill factor(FF)of 79.16%and an open-circuit voltage(V_(OC))of 0.971 V.This investigation presents a feasible strategy for interfacial passivation of the ETL to further improve the efficiency of PM-PSCs.
基金supported by the start-up research funds from Wuhan Institute of Technology(K202201)Natural Science Foundation of Hubei Province of China(2024CFB755)+1 种基金National Natural Science Foundation of China(U21A20317)the Graduate Innovation Fund of Wuhan Institute of Technology(CX2023040)。
文摘本文报道了一种适应于高效稳定的CO-CO_(2)相互转化的可逆固体氧化物电池(RSOC)相变燃料电极.该燃料电极由FeRu双金属纳米催化剂和Ruddlesden-Popper相Pr_(0.8)Sr_(1.2)Fe_(1-x-y)Ru_(x)Mo_(y)O_(4)氧化物复合而成(FeRu@PSFRM).固体氧化物燃料电池(SOFC)模式时,单电池800℃时的最大输出功率密度可以达到170 W cm^(-2);而在固体氧化物电解池(SOEC)模式下,800℃、1.3 V时电解池的电解电流密度达到-0.256 A cm^(-2).在SOFC-SOEC循环测试过程中,RSOC中CO-CO_(2)相互转化过程经历了“活化-稳定-衰退”三个明显阶段.幸运的是,性能衰退的燃料电极可通过“原位氧化-还原”处理实现性能再生,有效提升该电池的使用寿命.研究结果表明,原位脱溶形成的FeRu@PSFRM材料是一种极具应用潜力的燃料电极候选材料,以期实现高效稳定的CO-CO_(2)相互转化.
基金supported by the National Natural Science Foundation of China(21875013)the Beijing Natural Science Foundation(2182031).
文摘Inorganic CsPbI_(3)perovskite has exhibited great application potential in perovskite solar cells(PSCs)due to its suitable optical bandgap and high chemical stability.However,the perovskite phases of CsPbI_(3)are not stable at room temperature,where they transition to non-perovskite phases.Humidity or water has been thought to be the primary factor inducing this phase transition,which should be avoided throughout the procedure of film and device processing.Surprisingly,the present study indicates that preparing a precursor solution in humid air is beneficial to the growth of high-quality CsPbI_(3)perovskite to enhance device performance.It is demonstrated that the incorporation of H2O in the precursor solution from humid air or by intentional addition significantly changes the composition of coordination compounds and increases the amount of low iodine coordination complexes.As a result,the crystallization of dimethylammonium lead iodide(DMAPbI_(3))intermediate is suppressed well,which accelerates its subsequent conversion to CsPbI_(3)perovskite.Consequently,an oriented CsPbI_(3)perovskite film with improved crystallinity and lower defect density is obtained.Most importantly,carbon-based PSCs(C-PSCs)based on the CsPbI_(3)perovskite film achieve an efficiency of 16.05%,a new record for inorganic C-PSCs.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0405600)National Natural Science Foundation of China(Grant No.22275180)+2 种基金School-Local Cooperation Industrial Innovation Guidance Fund Key Project,Hefei University of Technology,China(Grant No.JZ2022YDZJ0087)Wuhu Major Engineering Application Project,China(Grant No.W2022JSKF0499)Collaborative Innovation Program of Hefei Science Center,CAS.
文摘Antimony selenide(Sb_(2)Se_(3))semiconducting material possesses a band gap of 1.05-1.2 eV and has been widely applied in single-junction solar cells.Based on its band gap,Sb_(2)Se_(3)can also be used as the bottom cell absorber material in tandem solar cells.More importantly,Sb_(2)Se_(3)solar cells exhibit excellent stability with nontoxic compositional elements.The band gap of organic-inorganic hybrid perovskite is tunable over a wide range.In this work,we demonstrate for the first time a perovskite/antimony selenide four-terminal tandem solar cell with a specially designed and fabricated transparent electrode for an optimized spectral response.By adjusting the thickness of the transparent electrode layer of the top cell,the wide-band-gap perovskite top solar cell achieves an efficiency of 17.88%,while the optimized antimony selenide bottom cell delivers a power conversion efficiency of 7.85%by introducing a double electron transport layer.Finally,the four-termi-nal tandem solar cell achieves an impressive efficiency exceeding 20%.This work provides a new tandem device structure and demonstrates that antimony selenide is a promising absorber material for bottom cell applications in tandem solar cells.
基金the funding from the Natural Science Foundation of Shaanxi Province(No.2020JQ-065)China Postdoctoral Science Foundation(No.2020 M683459)+1 种基金Start-up Research Fund of Southeast University(4003002330)Chen Xing Plan of Shanghai Jiao Tong University
文摘Symmetrical solid oxide cells(SSOCs)are very useful for energy generation and conversion.To fabricate the electrode of SSOC,it is very time-consuming to use the conventional approach.In this work,we design and develop a novel method,extreme heat treatment(EHT),to rapidly fabricate electrodes for SSOC.We show that by using the EHT method,the electrode can be fabricated in seconds(the fastest method to date),benefiting from enhanced reaction kinetics.The EHT-fabricated electrode presents a porous structure and good adhesion with the electrolyte.In contrast,tens of hours are needed to prepare the electrode by the conventional approach,and the prepared electrode exhibits a dense structure with a larger particle size due to the lengthy treatment.The EHT-fabricated electrode shows desirable electrochemical performance.Moreover,we show that the electrocatalytic activity of the perovskite electrode can be tuned by the vigorous approach of fast exsolution,deriving from the increased active sites for enhancing the electrochemical reactions.At 900℃,a promising peak power density of 966 mW cm^(-2)is reached.Our work exploits a new territory to fabricate and develop advanced electrodes for SSOCs in a rapid and high-throughput manner.
基金The Key-Area Research and Development Program of Guangdong Province(2022B0111130004)National Natural Science Foundation of China(52272257)Innovation Team of Jiangsu Province(JSSCTD202241)。
文摘通过改进的自蔓延燃烧法合成制备高熵双钙钛矿SmBa(Mn_(0.2)Fe_(0.2)Co_(0.2)Ni_(0.2)Cu_(0.2))_(2)O_(5+δ)(HE-SBC)阴极材料,并复合10%(摩尔分数)Gd_(2)O_(3)掺杂CeO_(2)(GDC)以优化性能。结果表明:通过B位高熵的方法可以显著减小Co离子由价态变化而引起的热膨胀,从而降低SmBaCo_(2)O_(5+δ)的热膨胀系数。在800℃,以氧化钇稳定氧化锆(YSZ)为电解质的HE-SBC对称电池的极化阻抗(R_(p))为1.04Ω·cm^(2),阳极支撑单电池的最高功率密度和R_(p)分别为683.53 m W/cm^(2)和0.46Ω·cm^(2)。进一步通过复合GDC(HE-SBC与GDC的质量比7:3)以增加三相界面提高HE-SBC的催化活性,在800℃HE-SBC-GDC复合阴极对称电池的极化阻抗仅为0.09Ω·cm^(2),且阳极支撑单电池的最高功率密度和R_(p)分别为838.66 m W/cm^(2)和0.12Ω·cm^(2)。