A theory of a class of higher order singular integral under the operator (L f) (u) =[u1 σf/σu1(u) - u1σf/σu1(u) + f(u)] is given. We transform the higher order singular integral to a usual Cauchy integr...A theory of a class of higher order singular integral under the operator (L f) (u) =[u1 σf/σu1(u) - u1σf/σu1(u) + f(u)] is given. We transform the higher order singular integral to a usual Cauchy integral, extend the permutation formula of the higher order singular integral deduced by Qian and Zhong in [4] to a general case, and discuss the regularization problem of the higher order singular integral equations with Cauchy kernel and variable coefficients on complex hypersphere.展开更多
Using the method of localization, the authors obtain the permutation formula of singular integrals with Bochner-Martinelli kernel for a relative compact domain with C^(1) smooth boundary on a Stein manifold. As an a...Using the method of localization, the authors obtain the permutation formula of singular integrals with Bochner-Martinelli kernel for a relative compact domain with C^(1) smooth boundary on a Stein manifold. As an application the authors discuss the regularization problem for linear singular integral equations with Bochner-Martinelli kernel and variable coefficients; using permutation formula, the singular integral equation can be reduced to a fredholm equation.展开更多
The conception of orthomorphism has been generalized in this paper, and a counting formula on the generalized linear orthomorphism in the vector space over the Galois field with the arbitrary prime number p as the cha...The conception of orthomorphism has been generalized in this paper, and a counting formula on the generalized linear orthomorphism in the vector space over the Galois field with the arbitrary prime number p as the characteristic is obtained. Thus, the partial generation algorithm of generalized linear orthomorphism is achieved. The counting formula of the linear orthomorphism in the vector space over the finite field with characteristic 2 is the special case in our results. Furthermore, the generalized linear orthomorphism generated and discussed in this paper can gain the maximum branch number when they are designed as P-permutations.展开更多
A saddlepoint approximation for a two-sample permutation test was obtained by Robinson[7].Although the approximation is very accurate, the formula is very complicated and difficult toapply. In this papert we shall rev...A saddlepoint approximation for a two-sample permutation test was obtained by Robinson[7].Although the approximation is very accurate, the formula is very complicated and difficult toapply. In this papert we shall revisit the same problem from a different angle. We shall first turnthe problem into a conditional probability and then apply a Lugannani-Rice type formula to it,which was developed by Skovagard[8] for the mean of i.i.d. samples and by Jing and Robinson[5]for smooth function of vector means. Both the Lugannani-Rice type formula and Robinson'sformula achieve the same relative error of order O(n-3/2), but the former is very compact andmuch easier to use in practice. Some numerical results will be presented to compare the twoformulas.展开更多
基金supported by the Natural Science Foundation of Fujian Province of China(S0850029,2008J0206)Innovation Foundation of Xiamen University(XDKJCX20063019),the National Science Foundation of China (10771174)
文摘A theory of a class of higher order singular integral under the operator (L f) (u) =[u1 σf/σu1(u) - u1σf/σu1(u) + f(u)] is given. We transform the higher order singular integral to a usual Cauchy integral, extend the permutation formula of the higher order singular integral deduced by Qian and Zhong in [4] to a general case, and discuss the regularization problem of the higher order singular integral equations with Cauchy kernel and variable coefficients on complex hypersphere.
基金The project was supported by the Natural Science Foundation of Fujian Province of China (Z0511002)the National Science Foundation of China (10271097,10571144)+1 种基金Foundation of Tianyuan (10526033)Chen L P, the Corresponding author
文摘Using the method of localization, the authors obtain the permutation formula of singular integrals with Bochner-Martinelli kernel for a relative compact domain with C^(1) smooth boundary on a Stein manifold. As an application the authors discuss the regularization problem for linear singular integral equations with Bochner-Martinelli kernel and variable coefficients; using permutation formula, the singular integral equation can be reduced to a fredholm equation.
基金Supported by the National Natural Science Foundation of China (60970115, 91018008)
文摘The conception of orthomorphism has been generalized in this paper, and a counting formula on the generalized linear orthomorphism in the vector space over the Galois field with the arbitrary prime number p as the characteristic is obtained. Thus, the partial generation algorithm of generalized linear orthomorphism is achieved. The counting formula of the linear orthomorphism in the vector space over the finite field with characteristic 2 is the special case in our results. Furthermore, the generalized linear orthomorphism generated and discussed in this paper can gain the maximum branch number when they are designed as P-permutations.
文摘A saddlepoint approximation for a two-sample permutation test was obtained by Robinson[7].Although the approximation is very accurate, the formula is very complicated and difficult toapply. In this papert we shall revisit the same problem from a different angle. We shall first turnthe problem into a conditional probability and then apply a Lugannani-Rice type formula to it,which was developed by Skovagard[8] for the mean of i.i.d. samples and by Jing and Robinson[5]for smooth function of vector means. Both the Lugannani-Rice type formula and Robinson'sformula achieve the same relative error of order O(n-3/2), but the former is very compact andmuch easier to use in practice. Some numerical results will be presented to compare the twoformulas.