Climate change and engineering activities are the leading causes of permafrost temperature increase,active layer thickening,and ground-ice thaw,which trigger changes in the engineering stability of embankments.Based o...Climate change and engineering activities are the leading causes of permafrost temperature increase,active layer thickening,and ground-ice thaw,which trigger changes in the engineering stability of embankments.Based on the important research advances on permafrost changes and frozen soil engineering in Qinghai-Xizang Plateau,the changes in permafrost temperature and active layer thickness,their relationships with climate factors,the response process of engineering activities on permafrost,dynamic change of engineering stability of Qinghai-Xizang Railway,and the cooling mechanism and process of crushed-rock layers are discussed using the monitoring data of permafrost and embankment deformation.Finally,solutions to the key scientific problems of frozen soil engineering under climate change are proposed.展开更多
Aimed at the characteristics of permafrost temperature influencing the safety of Qinghai-Tibet Railway and its on-line testing system, comparing the achievement of permafrost study nationwide with those worldwide, an ...Aimed at the characteristics of permafrost temperature influencing the safety of Qinghai-Tibet Railway and its on-line testing system, comparing the achievement of permafrost study nationwide with those worldwide, an automatic testing system of permafrost temperature, containing a master computer and some slave computers, was designed. By choosing high-precise thermistors as temperature sensor, designing and positioning the depth and interval of testing sections, testing, keeping and sending permafrost temperature data at time over slave computers, and receiving, processing and analyzing the data of collecting permafrost temperature over master computer, the change of the permafrost temperature can be described and analyzed, which can provide information for permafrost railway engineering design. Moreover, by taking permafrost temperature testing in a certain section of Qinghai-Tibet Railway as an instance, the collected data of permafrost temperature were analyzed, and the effect of permafrost behavior was depicted under the railway, as well as, a BP model was set up to predict the permafrost characteristics. This testing system will provide information timely about the change of the permafrost to support the safety operation in Qinghai-Tibet Railway.展开更多
基金supported by the Outstanding Youth Foundation Program of the National Natural Science Foundation of China (40625004)the Global Change Research Program of China (2010CB951402)the State Key Program of the National Natural Science Foundation of China(41030741)
文摘Climate change and engineering activities are the leading causes of permafrost temperature increase,active layer thickening,and ground-ice thaw,which trigger changes in the engineering stability of embankments.Based on the important research advances on permafrost changes and frozen soil engineering in Qinghai-Xizang Plateau,the changes in permafrost temperature and active layer thickness,their relationships with climate factors,the response process of engineering activities on permafrost,dynamic change of engineering stability of Qinghai-Xizang Railway,and the cooling mechanism and process of crushed-rock layers are discussed using the monitoring data of permafrost and embankment deformation.Finally,solutions to the key scientific problems of frozen soil engineering under climate change are proposed.
基金Project(2007XM036) supported by the Science and Technology of Beijing Jiaotong University, China
文摘Aimed at the characteristics of permafrost temperature influencing the safety of Qinghai-Tibet Railway and its on-line testing system, comparing the achievement of permafrost study nationwide with those worldwide, an automatic testing system of permafrost temperature, containing a master computer and some slave computers, was designed. By choosing high-precise thermistors as temperature sensor, designing and positioning the depth and interval of testing sections, testing, keeping and sending permafrost temperature data at time over slave computers, and receiving, processing and analyzing the data of collecting permafrost temperature over master computer, the change of the permafrost temperature can be described and analyzed, which can provide information for permafrost railway engineering design. Moreover, by taking permafrost temperature testing in a certain section of Qinghai-Tibet Railway as an instance, the collected data of permafrost temperature were analyzed, and the effect of permafrost behavior was depicted under the railway, as well as, a BP model was set up to predict the permafrost characteristics. This testing system will provide information timely about the change of the permafrost to support the safety operation in Qinghai-Tibet Railway.