In this article, the synthesis and characterization of a novel fluoromonomer and its copolymer with acrylamide is reported. 2-perfluoroamyl-4-hydroxylquinoline 2 was synthesized from ethyl 2, 2-dihydroperfluoroheptano...In this article, the synthesis and characterization of a novel fluoromonomer and its copolymer with acrylamide is reported. 2-perfluoroamyl-4-hydroxylquinoline 2 was synthesized from ethyl 2, 2-dihydroperfluoroheptanoate in high yields. The monomer 4 was then synthesized from 2 in two steps readily in high yields. Synthesis and characterization of copolymers of acrylamide (AM) and the fluoromonomer were investigated. The composition and intrinsic viscosity of these copolymers were studied. It was found that the rheological properties of aqueous solutions of polyacrylamide were modified significantly when a small proportion of the fluoromonomer 4 was incorporated on investigating the viscosity-concentration profiles, pseudoplasticity of these solutions and the effect of the presence of surfactant. These results could be explained by the hydrophobic association of the fluorocarbon segments in the aqueous solutions of these copolymers.展开更多
基金Project supported by National Natural Science Foundation,Grant approval numbers 29472074 and 29632003
文摘In this article, the synthesis and characterization of a novel fluoromonomer and its copolymer with acrylamide is reported. 2-perfluoroamyl-4-hydroxylquinoline 2 was synthesized from ethyl 2, 2-dihydroperfluoroheptanoate in high yields. The monomer 4 was then synthesized from 2 in two steps readily in high yields. Synthesis and characterization of copolymers of acrylamide (AM) and the fluoromonomer were investigated. The composition and intrinsic viscosity of these copolymers were studied. It was found that the rheological properties of aqueous solutions of polyacrylamide were modified significantly when a small proportion of the fluoromonomer 4 was incorporated on investigating the viscosity-concentration profiles, pseudoplasticity of these solutions and the effect of the presence of surfactant. These results could be explained by the hydrophobic association of the fluorocarbon segments in the aqueous solutions of these copolymers.