Plant growth, productivity, and seed yield depend on the efficient uptake, metabolism, and allocation of nutrients. Nitrogen is an essential macronutrient needed in high amounts. Plants have evolved efficient and sele...Plant growth, productivity, and seed yield depend on the efficient uptake, metabolism, and allocation of nutrients. Nitrogen is an essential macronutrient needed in high amounts. Plants have evolved efficient and selective transport systems for nitrogen uptake and transport within the plant to sustain development, growth, and finally reproduction. This review summarizes current knowledge on membrane proteins involved in transport of amino acids and peptides. A special emphasis was put on their function in planta. We focus on uptake of the organic nitrogen by the root, source-sink partitioning, and import into floral tissues and seeds.展开更多
AIM:To determine the molecular mechanisms of Shugan decoction(SGD) in the regulation of colonic motility and visceral hyperalgesia(VHL) in irritable bowel syndrome(IBS).METHODS:The chemical compounds contained in SGD ...AIM:To determine the molecular mechanisms of Shugan decoction(SGD) in the regulation of colonic motility and visceral hyperalgesia(VHL) in irritable bowel syndrome(IBS).METHODS:The chemical compounds contained in SGD were measured by high-performance liquid chromatography.A rat model of IBS was induced by chronic water avoidance stress(WAS).The number of fecal pellets was counted after WAS and the pain pressure threshold was measured by colorectal distension.Morphological changes in colonic mucosa were detected by hematoxylin-eosin staining.The contents of tumor necrosis factor(TNF)-αin colonic tissue and calcitonin-gene-related peptide(CGRP)in serum were measured by ELISA.The protein expression of serotonin[5-hydroxytryptamide(5-HT)],serotonin transporter(SERT),chromogranin A(Cg A)and CGRP incolon tissue was measured by immunohistochemistry.RESULTS:SGD inhibited colonic motility dysfunction and VHL in rats with IBS.Blockers of transient receptor potential(TRP)vanilloid 1(TRPV1)(Ruthenium Red)and TRP ankyrin-1(TRPA1)(HC-030031)and activator of protease-activated receptor(PAR)4 increased the pain pressure threshold,whereas activators of PAR2and TRPV4 decreased the pain pressure threshold in rats with IBS.The effect of SGD on pain pressure threshold in these rats was abolished by activators of TRPV1(capsaicin),TRPV4(RN1747),TRPA1(Polygodial)and PAR2(AC55541).In addition,CGRP levels in serum and colonic tissue were both increased in these rats.TNF-αlevel in colonic tissue was also significantly upregulated.However,the levels of 5-HT,SERT and Cg A in colonic tissue were decreased.All these pathological changes in rats with IBS were attenuated by SGD.CONCLUSION:SGD alleviated VHL and attenuated colon motility in IBS,partly by regulating TRPV1,TRPV4,TRPA1,PAR2,5-HT,Cg A and SERT,and reducing CGRP and TNF-αlevel.展开更多
Vitamin D_(3)(VD_(3)),an essential nutrient for animals,has been demonstrated to stimulate the uptake of certain amino acids.However,the role of VD_(3) in the intestine,the primary site for digestion and absorption of...Vitamin D_(3)(VD_(3)),an essential nutrient for animals,has been demonstrated to stimulate the uptake of certain amino acids.However,the role of VD_(3) in the intestine,the primary site for digestion and absorption of nutrients,remains poorly characterized.Here,the grass carp(Ctenopharyngodon idella)was studied to assess the influence of different doses of VD_(3)(15.2,364.3,782.5,1,167.9,1,573.8,and 1,980.1 IU/kg)on growth performance,intestinal morphology,digestive absorption,amino acid transport,and potential signaling molecule levels in a feeding experiment.As a result,dietary VD_(3) improved growth performance,intestinal structure,and digestive and brush border enzyme activities.Additionally,most intestinal free amino acids and their transporters were upregulated after VD_(3) intake,except for Ala,Lys,Asp,Leu,solute carrier(SLC)7A7,SLC1A5,and SLC1A3 mRNA in different segments,Leu and SLC6A14 mRNA in the proximal intestine,and SLC7A5 mRNA in the mid and distal intestine.In the crucial target of rapamycin(TOR)signal pathway of amino acid transport,the gene and protein expression of TOR,S6 kinase 1,and activating transcription factor 4 were elevated,whereas 4E-binding protein 1 was decreased,further suggesting an advanced amino acid absorption capacity in the fish due to VD_(3) supplementation.Based on percentage weight gain,feed efficiency,and trypsin activity,the VD_(3) requirements of on-growing grass carp were estimated to be 968.33,1,005.00,and 1,166.67 IU/kg,respectively.Our findings provide novel recommendations for VD_(3) supplementation to promote digestion and absorption capacities of fish,contributing to the overall productivity of aquaculture.展开更多
A common challenge in managing kidney transplant recipients(KTR)is posttransplant diabetes mellitus(PTDM)or diabetes mellitus(DM)newly diagnosed after transplantation,in addition to known pre-existing DM.PTDM is an im...A common challenge in managing kidney transplant recipients(KTR)is posttransplant diabetes mellitus(PTDM)or diabetes mellitus(DM)newly diagnosed after transplantation,in addition to known pre-existing DM.PTDM is an important risk factor for post-transplant cardiovascular(CV)disease,which adversely affects patient survival and quality of life.CV disease in KTR may manifest as ischemic heart disease,heart failure,and/or left ventricular hypertrophy.Available therapies for PTDM include most agents currently used to treat type 2 diabetes.More recently,the use of sodium glucose co-transporter 2 inhibitors(SGLT2i),glucagon-like peptide-1 receptor agonists(GLP-1 RA),and dipeptidyl peptidase 4 inhibitors(DPP4i)has cautiously extended to KTR with PTDM,even though KTR are typically excluded from large general population clinical trials.Initial evidence from observational studies seems to indicate that SGLT2i,GLP-1 RA,and DPP4i may be safe and effective for glycemic control in KTR,but their benefit in reducing CV events in this otherwise high-risk population remains unproven.These newer drugs must still be used with care due to the increased propensity of KTR for intravascular volume depletion and acute kidney injury due to diarrhea and their single-kidney status,pre-existing burden of peripheral vascular disease,urinary tract infections due to immunosuppression and a surgically altered urinary tract,erythrocytosis from calcineurin inhibitors,and reduced kidney function from acute or chronic rejection.展开更多
As the global demographic shifts toward an aging population,understanding the efficiency of protein uti-lization in older adults becomes crucial.Our study explores the intricate relationship between protein intake and...As the global demographic shifts toward an aging population,understanding the efficiency of protein uti-lization in older adults becomes crucial.Our study explores the intricate relationship between protein intake and aging,with a focus on precision nutrition for older people.Through a meta-analysis,we con-firm a decline in protein-utilization capacity in older individuals and examine the different contributions of plant and animal protein.In experiments involving mice of different ages,older mice exhibited decreases in the biological utilization of four proteins(casein,beef protein,soy protein,and gluten),par-ticularly casein.In subsequent research,casein was studied as a key protein.A decline in gastric digestion function was observed through peptidomics and the examination of pepsin levels using casein.Nevertheless,this decline did not significantly affect the overall protein digestion during the aging pro-cess.The combined application of targeted amino acid metabolomics identified abnormal absorption of amino acids as the underlying cause of decreased protein utilization during aging,particularly emphasiz-ing a reduction in branched-chain amino acids(BCAAs)in older mice.Delving deeper into the proteomics of the intestinal protein digestion and absorption pathway,a reduction of over 60%in large neutral amino acid transporter 2(LAT2)protein expression was observed in both older humans and aged mice.The reduction in LAT2 protein was found to be a key factor influencing the diminished BCAA availability.Overall,our study establishes the significance of amino acid absorption through LAT2 in protein utiliza-tion during aging and offers a new theoretical foundation for improving protein utilization in the older adults.展开更多
Turbot(Scophthalmus maximus L.),a carnivorous fish species with high dietary protein requirement,was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which...Turbot(Scophthalmus maximus L.),a carnivorous fish species with high dietary protein requirement,was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which was divided into six segments including stomach,pyloric caeca,rectum,and three equal parts of the remainder of the intestine.The results showed that the expression of two peptide and eleven amino acid transporters genes exhibited distinct patterns.Peptide transporter 1(Pep T1) was rich in proximal intestine while peptide transporter 2(PepT2) was abundant in distal intestine.A number of neutral and cationic amino acid transporters expressed richly in whole intestine including B^0-type amino acid transporter 1(B^0AT1),L-type amino acid transporter 2(LAT2),T-type amino acid transporter 1(TAT1),proton-coupled amino acid transporter 1(PAT1),y^+L-type amino acid transporter 1(y^+LAT1),and cationic amino acid transporter 2(CAT2) while ASC amino acid transporter 2(ASCT2),sodium-coupled neutral amino acid transporter 2(SNAT2),and y^+L-type amino acid transporter 2(y^+LAT2) abundantly expressed in stomach.In addition,system b^(0,+) transporters(rBAT and b^(0,+)AT) existed richly in distal intestine.These findings comprehensively characterized the distribution of solute carrier family proteins,which revealed the relative importance of peptide and amino acid absorption through luminal membrane.Our findings are helpful to understand the mechanism of the utilization of dietary protein in fish with a short digestive tract.展开更多
The plant PTR/NRT1(peptide transporter/nitrate transporter 1)gene family com—prises di/tripeptide and low affinity nitrate transporters;some members also recognize other substrates like phytohormones(auxin and abscis...The plant PTR/NRT1(peptide transporter/nitrate transporter 1)gene family com—prises di/tripeptide and low affinity nitrate transporters;some members also recognize other substrates like phytohormones(auxin and abscisic acid)and defence compound glucosinolate.Little is known about members of this gene family in rice(Oryza sativa L.).Here,we report the influence of altered OsPTR9 expression on nitrogen use efficiency,growth and grain yield.OsPTR9 expression is regulated by the exogenous nitrogen source and by the day-night cycle.Elevated expression of OsPTR9 in transgenic rice plants resulted in enhanced ammonium uptake,promotion of lateral root formation,and increased grain yield.On the other hand,downregulation of OsPTR9 in a T-DNA insertion line(osptr9)and in the 0sPTR9一RNAi rice plants had the opposite effect.These results suggest that OsPTR9 may hold potential in improving nitrogen use efficiency and grain yield for rice breeding.展开更多
基金Research in M.T.'s laboratory was supported by the US National Science Foundation (IOS 0135344 and IOS 0448506) and by the Agricultural and Food Research Initiative Competitive Grant no. 2010-65115-20382 from the USDA National Institute of Food and Agriculture. Work in D.R.'s laboratory was supported by grants from the Swiss National Science Foundation 3100A0-107507 and 31003A 127340, and EU Marie Curie Research Training Network 'VaTEP - Vacuolar Transport Equipment for Growth Regulation of Plants' (M RTN-CT-2006-035833). No conflict of interest declared.
文摘Plant growth, productivity, and seed yield depend on the efficient uptake, metabolism, and allocation of nutrients. Nitrogen is an essential macronutrient needed in high amounts. Plants have evolved efficient and selective transport systems for nitrogen uptake and transport within the plant to sustain development, growth, and finally reproduction. This review summarizes current knowledge on membrane proteins involved in transport of amino acids and peptides. A special emphasis was put on their function in planta. We focus on uptake of the organic nitrogen by the root, source-sink partitioning, and import into floral tissues and seeds.
基金Supported by Innovation Program of the Shanghai Municipal Education Commission,No.12YZ065National Natural Science Foundation of China,No.81072786,No.81473630 and No.81202665+2 种基金Longhua Medical Project,No.D-09High level Project of the University of Educational Commission of Shanghai,China,No.2008GSP19Shanghai Leading Academic Discipline Project,No.J50305
文摘AIM:To determine the molecular mechanisms of Shugan decoction(SGD) in the regulation of colonic motility and visceral hyperalgesia(VHL) in irritable bowel syndrome(IBS).METHODS:The chemical compounds contained in SGD were measured by high-performance liquid chromatography.A rat model of IBS was induced by chronic water avoidance stress(WAS).The number of fecal pellets was counted after WAS and the pain pressure threshold was measured by colorectal distension.Morphological changes in colonic mucosa were detected by hematoxylin-eosin staining.The contents of tumor necrosis factor(TNF)-αin colonic tissue and calcitonin-gene-related peptide(CGRP)in serum were measured by ELISA.The protein expression of serotonin[5-hydroxytryptamide(5-HT)],serotonin transporter(SERT),chromogranin A(Cg A)and CGRP incolon tissue was measured by immunohistochemistry.RESULTS:SGD inhibited colonic motility dysfunction and VHL in rats with IBS.Blockers of transient receptor potential(TRP)vanilloid 1(TRPV1)(Ruthenium Red)and TRP ankyrin-1(TRPA1)(HC-030031)and activator of protease-activated receptor(PAR)4 increased the pain pressure threshold,whereas activators of PAR2and TRPV4 decreased the pain pressure threshold in rats with IBS.The effect of SGD on pain pressure threshold in these rats was abolished by activators of TRPV1(capsaicin),TRPV4(RN1747),TRPA1(Polygodial)and PAR2(AC55541).In addition,CGRP levels in serum and colonic tissue were both increased in these rats.TNF-αlevel in colonic tissue was also significantly upregulated.However,the levels of 5-HT,SERT and Cg A in colonic tissue were decreased.All these pathological changes in rats with IBS were attenuated by SGD.CONCLUSION:SGD alleviated VHL and attenuated colon motility in IBS,partly by regulating TRPV1,TRPV4,TRPA1,PAR2,5-HT,Cg A and SERT,and reducing CGRP and TNF-αlevel.
基金National Key R&D Program of China(2019YFD0900200,2018YFD0900400)National Natural Science Foundation of China for Outstanding Youth Science Foundation(31922086)+1 种基金Young Top-Notch Talent Support Program,China Agriculture Research System of MOF and MARA(CARS-45)Sichuan Science and Technology Program(2019YFN0036).
文摘Vitamin D_(3)(VD_(3)),an essential nutrient for animals,has been demonstrated to stimulate the uptake of certain amino acids.However,the role of VD_(3) in the intestine,the primary site for digestion and absorption of nutrients,remains poorly characterized.Here,the grass carp(Ctenopharyngodon idella)was studied to assess the influence of different doses of VD_(3)(15.2,364.3,782.5,1,167.9,1,573.8,and 1,980.1 IU/kg)on growth performance,intestinal morphology,digestive absorption,amino acid transport,and potential signaling molecule levels in a feeding experiment.As a result,dietary VD_(3) improved growth performance,intestinal structure,and digestive and brush border enzyme activities.Additionally,most intestinal free amino acids and their transporters were upregulated after VD_(3) intake,except for Ala,Lys,Asp,Leu,solute carrier(SLC)7A7,SLC1A5,and SLC1A3 mRNA in different segments,Leu and SLC6A14 mRNA in the proximal intestine,and SLC7A5 mRNA in the mid and distal intestine.In the crucial target of rapamycin(TOR)signal pathway of amino acid transport,the gene and protein expression of TOR,S6 kinase 1,and activating transcription factor 4 were elevated,whereas 4E-binding protein 1 was decreased,further suggesting an advanced amino acid absorption capacity in the fish due to VD_(3) supplementation.Based on percentage weight gain,feed efficiency,and trypsin activity,the VD_(3) requirements of on-growing grass carp were estimated to be 968.33,1,005.00,and 1,166.67 IU/kg,respectively.Our findings provide novel recommendations for VD_(3) supplementation to promote digestion and absorption capacities of fish,contributing to the overall productivity of aquaculture.
文摘A common challenge in managing kidney transplant recipients(KTR)is posttransplant diabetes mellitus(PTDM)or diabetes mellitus(DM)newly diagnosed after transplantation,in addition to known pre-existing DM.PTDM is an important risk factor for post-transplant cardiovascular(CV)disease,which adversely affects patient survival and quality of life.CV disease in KTR may manifest as ischemic heart disease,heart failure,and/or left ventricular hypertrophy.Available therapies for PTDM include most agents currently used to treat type 2 diabetes.More recently,the use of sodium glucose co-transporter 2 inhibitors(SGLT2i),glucagon-like peptide-1 receptor agonists(GLP-1 RA),and dipeptidyl peptidase 4 inhibitors(DPP4i)has cautiously extended to KTR with PTDM,even though KTR are typically excluded from large general population clinical trials.Initial evidence from observational studies seems to indicate that SGLT2i,GLP-1 RA,and DPP4i may be safe and effective for glycemic control in KTR,but their benefit in reducing CV events in this otherwise high-risk population remains unproven.These newer drugs must still be used with care due to the increased propensity of KTR for intravascular volume depletion and acute kidney injury due to diarrhea and their single-kidney status,pre-existing burden of peripheral vascular disease,urinary tract infections due to immunosuppression and a surgically altered urinary tract,erythrocytosis from calcineurin inhibitors,and reduced kidney function from acute or chronic rejection.
基金funded by the National Key Research and Development Program of China(2023YFF1104502)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2022QNRC001).
文摘As the global demographic shifts toward an aging population,understanding the efficiency of protein uti-lization in older adults becomes crucial.Our study explores the intricate relationship between protein intake and aging,with a focus on precision nutrition for older people.Through a meta-analysis,we con-firm a decline in protein-utilization capacity in older individuals and examine the different contributions of plant and animal protein.In experiments involving mice of different ages,older mice exhibited decreases in the biological utilization of four proteins(casein,beef protein,soy protein,and gluten),par-ticularly casein.In subsequent research,casein was studied as a key protein.A decline in gastric digestion function was observed through peptidomics and the examination of pepsin levels using casein.Nevertheless,this decline did not significantly affect the overall protein digestion during the aging pro-cess.The combined application of targeted amino acid metabolomics identified abnormal absorption of amino acids as the underlying cause of decreased protein utilization during aging,particularly emphasiz-ing a reduction in branched-chain amino acids(BCAAs)in older mice.Delving deeper into the proteomics of the intestinal protein digestion and absorption pathway,a reduction of over 60%in large neutral amino acid transporter 2(LAT2)protein expression was observed in both older humans and aged mice.The reduction in LAT2 protein was found to be a key factor influencing the diminished BCAA availability.Overall,our study establishes the significance of amino acid absorption through LAT2 in protein utiliza-tion during aging and offers a new theoretical foundation for improving protein utilization in the older adults.
基金supported by the National Natural Science Foundation of China (No.31222055)973 Program (2014CB138602)
文摘Turbot(Scophthalmus maximus L.),a carnivorous fish species with high dietary protein requirement,was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which was divided into six segments including stomach,pyloric caeca,rectum,and three equal parts of the remainder of the intestine.The results showed that the expression of two peptide and eleven amino acid transporters genes exhibited distinct patterns.Peptide transporter 1(Pep T1) was rich in proximal intestine while peptide transporter 2(PepT2) was abundant in distal intestine.A number of neutral and cationic amino acid transporters expressed richly in whole intestine including B^0-type amino acid transporter 1(B^0AT1),L-type amino acid transporter 2(LAT2),T-type amino acid transporter 1(TAT1),proton-coupled amino acid transporter 1(PAT1),y^+L-type amino acid transporter 1(y^+LAT1),and cationic amino acid transporter 2(CAT2) while ASC amino acid transporter 2(ASCT2),sodium-coupled neutral amino acid transporter 2(SNAT2),and y^+L-type amino acid transporter 2(y^+LAT2) abundantly expressed in stomach.In addition,system b^(0,+) transporters(rBAT and b^(0,+)AT) existed richly in distal intestine.These findings comprehensively characterized the distribution of solute carrier family proteins,which revealed the relative importance of peptide and amino acid absorption through luminal membrane.Our findings are helpful to understand the mechanism of the utilization of dietary protein in fish with a short digestive tract.
文摘The plant PTR/NRT1(peptide transporter/nitrate transporter 1)gene family com—prises di/tripeptide and low affinity nitrate transporters;some members also recognize other substrates like phytohormones(auxin and abscisic acid)and defence compound glucosinolate.Little is known about members of this gene family in rice(Oryza sativa L.).Here,we report the influence of altered OsPTR9 expression on nitrogen use efficiency,growth and grain yield.OsPTR9 expression is regulated by the exogenous nitrogen source and by the day-night cycle.Elevated expression of OsPTR9 in transgenic rice plants resulted in enhanced ammonium uptake,promotion of lateral root formation,and increased grain yield.On the other hand,downregulation of OsPTR9 in a T-DNA insertion line(osptr9)and in the 0sPTR9一RNAi rice plants had the opposite effect.These results suggest that OsPTR9 may hold potential in improving nitrogen use efficiency and grain yield for rice breeding.