随着位置服务(location based service,LBS)应用需求的日益增加以及多部位微机电系统(micro electro mechanical system,MEMS)导航传感器的广泛普及,行人航位推算(pedestrian dead reckoning,PDR)越来越受关注,成为行人导航研究中主流...随着位置服务(location based service,LBS)应用需求的日益增加以及多部位微机电系统(micro electro mechanical system,MEMS)导航传感器的广泛普及,行人航位推算(pedestrian dead reckoning,PDR)越来越受关注,成为行人导航研究中主流的技术之一。但是,低成本的MEMS传感器测量噪声大,PDR解算误差积累严重;且PDR算法的普适性差,不同穿戴位置的MEMS导航传感器约束条件的可用性差异明显。提出了一种基于穿戴式MEMS传感器状态识别的多部位PDR算法。首先,采用支持向量机(support vector machine,SVM)进行全监督训练,实现了静止状态及运动状态下手部、腿部、腰部、足部4种穿戴位置的准确识别;然后,分析了不同穿戴位置下PDR算法的适用性,根据适用性分析结果提出了多部位PDR的综合解算策略。实测结果表明,该方法能够动态、准确地实现穿戴式MEMS传感器的状态识别,正确率达97%以上;应用PDR综合解算策略后,足部PDR能够实现高精度解算,累计误差为0.74%,而其他位置(手部、腿部、腰部)解算效果得到显著改善,累计误差从识别前的6.76%~21.19%减小为2.92%~5.62%。展开更多
Navigation systems play an important role in many vital disciplines. Determining the location of a user relative to its physical environment is an important part of many indoor-based navigation services such as user n...Navigation systems play an important role in many vital disciplines. Determining the location of a user relative to its physical environment is an important part of many indoor-based navigation services such as user navigation, enhanced 911 (E911), law enforcement, location-based and marketing services. Indoor navigation applications require a reliable, trustful and continuous navigation solution that overcomes the challenge of Global Navigation Satellite System (GNSS) signal unavailability. To compensate for this issue, other navigation systems such as Inertial Navigation System (INS) are introduced, however, over time there is a significant amount of drift especially in common with low-cost commercial sensors. In this paper, a map aided navigation solution is developed. This research develops an aiding system that utilizes geospatial data to assist the navigation solution by providing virtual boundaries for the navigation trajectories and limits its possibilities only when it is logical to locate the user on a map. The algorithm develops a Pedestrian Dead Reckoning (PDR) based on smart-phone accelerometer and magnetometer sensors to provide the navigation solution. Geospatial model for two indoor environments with a developed map matching algorithm was used to match and project navigation position estimates on the geospatial map. The developed algorithms were field tested in indoor environments and yielded accurate matching results as well as a significant enhancement to positional accuracy. The achieved results demonstrate that the contribution of the developed map aided system enhances the reliability, usability, and accuracy of navigation trajectories in indoor environments.展开更多
针对室内定位系统中现有的行人航位推算(pedestrian dead reckoning,PDR)方法存在加速度计适用性较差,以及基于惯性和磁传感器的航向估计易受器件误差和磁场环境的影响,导致精度较低的问题,在不增加基础设施成本和现场勘察工作的前提下...针对室内定位系统中现有的行人航位推算(pedestrian dead reckoning,PDR)方法存在加速度计适用性较差,以及基于惯性和磁传感器的航向估计易受器件误差和磁场环境的影响,导致精度较低的问题,在不增加基础设施成本和现场勘察工作的前提下,提出一种调频(frequencymodulation,FM)广播信号辅助PDR的室内行人定位技术:在传播模型理论基础上探究FM信号接收信号强度指数(RSSI)与步长的关系,将其与加速度组合以提升步长估计的适用性;然后通过分析FM信号在直线/转弯运动模式下的变化,将其与角速度组合以提升模式识别准确率,并使用模式识别结果约束航向漂移误差;最后,综合步长与航向估计结果实现定位。实验结果表明,引入FM信号后定位误差均值可分别减小36.1%、78.9%。展开更多
受室内复杂环境的影响,实现满足各类室内定位需求、准确实时的定位仍有很大的挑战性。提出了一种联合WiFi信息和行人航位推算(pedestrian dead reckoning,PDR)算法的智能手机室内定位方法,并给出了其原理和流程。实验结果表明,该方法适...受室内复杂环境的影响,实现满足各类室内定位需求、准确实时的定位仍有很大的挑战性。提出了一种联合WiFi信息和行人航位推算(pedestrian dead reckoning,PDR)算法的智能手机室内定位方法,并给出了其原理和流程。实验结果表明,该方法适应性较强、定位结果准确。展开更多
文摘随着位置服务(location based service,LBS)应用需求的日益增加以及多部位微机电系统(micro electro mechanical system,MEMS)导航传感器的广泛普及,行人航位推算(pedestrian dead reckoning,PDR)越来越受关注,成为行人导航研究中主流的技术之一。但是,低成本的MEMS传感器测量噪声大,PDR解算误差积累严重;且PDR算法的普适性差,不同穿戴位置的MEMS导航传感器约束条件的可用性差异明显。提出了一种基于穿戴式MEMS传感器状态识别的多部位PDR算法。首先,采用支持向量机(support vector machine,SVM)进行全监督训练,实现了静止状态及运动状态下手部、腿部、腰部、足部4种穿戴位置的准确识别;然后,分析了不同穿戴位置下PDR算法的适用性,根据适用性分析结果提出了多部位PDR的综合解算策略。实测结果表明,该方法能够动态、准确地实现穿戴式MEMS传感器的状态识别,正确率达97%以上;应用PDR综合解算策略后,足部PDR能够实现高精度解算,累计误差为0.74%,而其他位置(手部、腿部、腰部)解算效果得到显著改善,累计误差从识别前的6.76%~21.19%减小为2.92%~5.62%。
文摘Navigation systems play an important role in many vital disciplines. Determining the location of a user relative to its physical environment is an important part of many indoor-based navigation services such as user navigation, enhanced 911 (E911), law enforcement, location-based and marketing services. Indoor navigation applications require a reliable, trustful and continuous navigation solution that overcomes the challenge of Global Navigation Satellite System (GNSS) signal unavailability. To compensate for this issue, other navigation systems such as Inertial Navigation System (INS) are introduced, however, over time there is a significant amount of drift especially in common with low-cost commercial sensors. In this paper, a map aided navigation solution is developed. This research develops an aiding system that utilizes geospatial data to assist the navigation solution by providing virtual boundaries for the navigation trajectories and limits its possibilities only when it is logical to locate the user on a map. The algorithm develops a Pedestrian Dead Reckoning (PDR) based on smart-phone accelerometer and magnetometer sensors to provide the navigation solution. Geospatial model for two indoor environments with a developed map matching algorithm was used to match and project navigation position estimates on the geospatial map. The developed algorithms were field tested in indoor environments and yielded accurate matching results as well as a significant enhancement to positional accuracy. The achieved results demonstrate that the contribution of the developed map aided system enhances the reliability, usability, and accuracy of navigation trajectories in indoor environments.
文摘针对室内定位系统中现有的行人航位推算(pedestrian dead reckoning,PDR)方法存在加速度计适用性较差,以及基于惯性和磁传感器的航向估计易受器件误差和磁场环境的影响,导致精度较低的问题,在不增加基础设施成本和现场勘察工作的前提下,提出一种调频(frequencymodulation,FM)广播信号辅助PDR的室内行人定位技术:在传播模型理论基础上探究FM信号接收信号强度指数(RSSI)与步长的关系,将其与加速度组合以提升步长估计的适用性;然后通过分析FM信号在直线/转弯运动模式下的变化,将其与角速度组合以提升模式识别准确率,并使用模式识别结果约束航向漂移误差;最后,综合步长与航向估计结果实现定位。实验结果表明,引入FM信号后定位误差均值可分别减小36.1%、78.9%。