Artificial intelligence(AI) aims to mimic human cognitive functions and execute intellectual activities like that performed by humans dealing with an uncertain environment. The rapid development of AI technology provi...Artificial intelligence(AI) aims to mimic human cognitive functions and execute intellectual activities like that performed by humans dealing with an uncertain environment. The rapid development of AI technology provides powerful tools to analyze massive amounts of data, facilitating physicians to make better clinical decisions or even replace human judgment in healthcare.Advanced AI technology also creates novel opportunities for exploring the scientific basis of traditional Chinese medicine(TCM) and developing the standardization and digitization of TCM pulse diagnostic methodology. In the present study, we review and discuss the potential application of AI technology in TCM pulse diagnosis. The major contents include the following aspects:(1) a brief introduction of the general concepts and knowledge of TCM pulse diagnosis or palpation,(2) landmark developments in AI technology and the applications of common AI deep learning algorithms in medical practice,(3) the current progress of AI technology in TCM pulse diagnosis,(4) challenges and perspectives of AI technology in TCM pulse diagnosis. In conclusion, the pairing of TCM with modern AI technology will bring novel insights into understanding the scientific principles underlying TCM pulse diagnosis and creating opportunities for the development of AI deep learning technology for the standardization and digitalization of TCM pulse diagnosis.展开更多
The commonly used Poisson rectangular pulse(PRP)model,employed for simulating high-resolution residential water consumption patterns(RWCPs),relies on calibration via medium-resolution RWCPs obtained from practical mea...The commonly used Poisson rectangular pulse(PRP)model,employed for simulating high-resolution residential water consumption patterns(RWCPs),relies on calibration via medium-resolution RWCPs obtained from practical measurements.This introduces inevitable uncertainty stemming from the measured RWCPs,which consequently impacts the precision of model simulations.Here we enhance the accuracy of the PRP model by addressing the uncertainty of RWCPs.We established a critical sampling size of 2000 household water consumption patterns(HWCPs)with a data logging interval(DLI)of 15 min to attain dependable RWCPs.Through Genetic Algorithm calibration,the optimal values of the PRP model's parameters were determined:pulse frequency lλ=91 d^(-1),mean of pulse intensity E(I)=0.346 m^(3) h^(-1),standard deviation of pulse intensity STD(I)=0.292 m^(3) h^(-1),mean of pulse duration E(D)=40 s,and standard deviation of pulse duration STD(D)=55 s.Furthermore,validation was conducted at both HWCP and RWCP levels.We recommend a sampling size of2000 HWCPs and a DLI of30 min for PRP model calibration to balance simulation precision and practical implementation.This study significantly advances the theoretical foundation and real-world application of the PRP model,enhancing its role in urban water supply system management.展开更多
This paper presents a method to estimate beam pointing of phased array radar by the pulse amplitude train, which is significant in radar electronic reconnaissance and electronic support measure. Firstly, the antenna p...This paper presents a method to estimate beam pointing of phased array radar by the pulse amplitude train, which is significant in radar electronic reconnaissance and electronic support measure. Firstly, the antenna patterns modeling of the phased array system is exploited to build the radar sweeping model and the signal propagation model. Secondly, the relationship between the variation of the radiated power and the antenna beam pointing angles in the given airspace is analyzed. Based on the above two points, the sample with obvious amplitude characteristics of the pulse amplitude train can be screened out after detecting the train peaks. Finally, the sample is matched to the subsequent pulse amplitude train based on the Hausdorff distance. The proposed methods have less prior knowledge and higher efficiency and are easier to process. By cross correlating the sample of the pulse amplitude train with the sample data of the antenna follow-up radiation, the probability of detection of the beam pointing direction becomes larger in case that the subsequent antenna beam returns to the specific position.展开更多
The concept of the time-modulated array has been emerging as an alternative to the complex phase shifters,which lowers the cost of the array feeding network due to the utilization of radio frequency(RF)switches.The va...The concept of the time-modulated array has been emerging as an alternative to the complex phase shifters,which lowers the cost of the array feeding network due to the utilization of radio frequency(RF)switches.The various forms of hexagonal antenna array geometries can be used for applications like surveillance tracking in phased array radar and wireless communication systems.This work proposes the generalized array factor(AF)for the hexagonal antenna array geometry based on time modulation.The time modulation in generalized hexagonal geometry can maintain the fixed static amplitude excitation,giving more flexibility over time.Furthermore,a novel trapezoidal switching function is also proposed and applied to the generalized array factor to enable future researchers to use this array factor in the field of advancement to observe how switching schemes like trapezoidal and rectangular affect the array pattern's side lobe level(SLL).The generalized equation can be utilized for the analysis and synthesis of radiation characteristics of the time-modulated hexagonal array(TMHA),time-modulated concentric hexagonal array(TMCHA),time-modulated hexagonal cylindrical array(TMHCA),and time-modulated hexagonal concentric cylindrical array(TMHCCA).The numerical result illustrates the generation of AF of time-modulated hexagonal structures and also shows that the trapezoidal switching sequence outperforms the rectangular switch using the cat swarm optimization(CSO)approach.展开更多
We propose a joint look-up-table(LUT)-based nonlinear predistortion and digital resolution enhancement scheme to achieve high-speed and low-cost optical interconnects using low-resolution digital-to-analog converters(...We propose a joint look-up-table(LUT)-based nonlinear predistortion and digital resolution enhancement scheme to achieve high-speed and low-cost optical interconnects using low-resolution digital-to-analog converters(DACs).The LUT-based predistortion is employed to mitigate the patterndependent effect(PDE)of a semiconductor optical amplifier(SOA),while the digital resolution enhancer(DRE)is utilized to shape the quantization noise,lowering the requirement for the resolution of DAC.We experimentally demonstrate O-band intensity modulation and direct detection(IM/DD)transmission of 124-GBd 4∕6-level pulse-amplitude modulation ePAMT-4∕6 and 112-GBd PAM-8 signals over a 2-km standard single-mode fiber(SSMF)with 3∕3.5∕4-bit DACs.In the case of 40-km SSMF transmission with an SOAbased preamplifier,124-GBd on-off-keying(OOK)/PAM-3/PAM-4 signals are successfully transmitted with 1.5∕2∕3-bit DACs.To the best of our knowledge,we have achieved the highest net data rates of 235.3-Gb∕s PAM-4,289.7-Gb∕s PAM-6,and 294.7 Gb∕s PAM-8 signals over 2-km SSMF,as well as 117.6-Gb∕s OOK,173.8-Gb∕s PAM-3,and−231.8 Gb∕s PAM-4 signals over 40-km SSMF,employing low-resolution DACs.The experimental results reveal that the joint LUT-based predistortion and DRE effectively mitigate the PDE and improve the signal-to-quantization noise ratio by shaping the noise.The proposed scheme can provide a powerful solution for low-cost IM/DD optical interconnects beyond 200 Gb∕s.展开更多
基金We thank for the funding support form the Health and Medical Research Fund,Hong Kong SAR(No.17181811).
文摘Artificial intelligence(AI) aims to mimic human cognitive functions and execute intellectual activities like that performed by humans dealing with an uncertain environment. The rapid development of AI technology provides powerful tools to analyze massive amounts of data, facilitating physicians to make better clinical decisions or even replace human judgment in healthcare.Advanced AI technology also creates novel opportunities for exploring the scientific basis of traditional Chinese medicine(TCM) and developing the standardization and digitization of TCM pulse diagnostic methodology. In the present study, we review and discuss the potential application of AI technology in TCM pulse diagnosis. The major contents include the following aspects:(1) a brief introduction of the general concepts and knowledge of TCM pulse diagnosis or palpation,(2) landmark developments in AI technology and the applications of common AI deep learning algorithms in medical practice,(3) the current progress of AI technology in TCM pulse diagnosis,(4) challenges and perspectives of AI technology in TCM pulse diagnosis. In conclusion, the pairing of TCM with modern AI technology will bring novel insights into understanding the scientific principles underlying TCM pulse diagnosis and creating opportunities for the development of AI deep learning technology for the standardization and digitalization of TCM pulse diagnosis.
基金supported by the National Natural Science Foundation of China(52170105)the Ministry of Science and Technology of China(2019YFD1100105)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2019043).
文摘The commonly used Poisson rectangular pulse(PRP)model,employed for simulating high-resolution residential water consumption patterns(RWCPs),relies on calibration via medium-resolution RWCPs obtained from practical measurements.This introduces inevitable uncertainty stemming from the measured RWCPs,which consequently impacts the precision of model simulations.Here we enhance the accuracy of the PRP model by addressing the uncertainty of RWCPs.We established a critical sampling size of 2000 household water consumption patterns(HWCPs)with a data logging interval(DLI)of 15 min to attain dependable RWCPs.Through Genetic Algorithm calibration,the optimal values of the PRP model's parameters were determined:pulse frequency lλ=91 d^(-1),mean of pulse intensity E(I)=0.346 m^(3) h^(-1),standard deviation of pulse intensity STD(I)=0.292 m^(3) h^(-1),mean of pulse duration E(D)=40 s,and standard deviation of pulse duration STD(D)=55 s.Furthermore,validation was conducted at both HWCP and RWCP levels.We recommend a sampling size of2000 HWCPs and a DLI of30 min for PRP model calibration to balance simulation precision and practical implementation.This study significantly advances the theoretical foundation and real-world application of the PRP model,enhancing its role in urban water supply system management.
基金supported by the National Natural Science Foundation of China(61501501)
文摘This paper presents a method to estimate beam pointing of phased array radar by the pulse amplitude train, which is significant in radar electronic reconnaissance and electronic support measure. Firstly, the antenna patterns modeling of the phased array system is exploited to build the radar sweeping model and the signal propagation model. Secondly, the relationship between the variation of the radiated power and the antenna beam pointing angles in the given airspace is analyzed. Based on the above two points, the sample with obvious amplitude characteristics of the pulse amplitude train can be screened out after detecting the train peaks. Finally, the sample is matched to the subsequent pulse amplitude train based on the Hausdorff distance. The proposed methods have less prior knowledge and higher efficiency and are easier to process. By cross correlating the sample of the pulse amplitude train with the sample data of the antenna follow-up radiation, the probability of detection of the beam pointing direction becomes larger in case that the subsequent antenna beam returns to the specific position.
文摘The concept of the time-modulated array has been emerging as an alternative to the complex phase shifters,which lowers the cost of the array feeding network due to the utilization of radio frequency(RF)switches.The various forms of hexagonal antenna array geometries can be used for applications like surveillance tracking in phased array radar and wireless communication systems.This work proposes the generalized array factor(AF)for the hexagonal antenna array geometry based on time modulation.The time modulation in generalized hexagonal geometry can maintain the fixed static amplitude excitation,giving more flexibility over time.Furthermore,a novel trapezoidal switching function is also proposed and applied to the generalized array factor to enable future researchers to use this array factor in the field of advancement to observe how switching schemes like trapezoidal and rectangular affect the array pattern's side lobe level(SLL).The generalized equation can be utilized for the analysis and synthesis of radiation characteristics of the time-modulated hexagonal array(TMHA),time-modulated concentric hexagonal array(TMCHA),time-modulated hexagonal cylindrical array(TMHCA),and time-modulated hexagonal concentric cylindrical array(TMHCCA).The numerical result illustrates the generation of AF of time-modulated hexagonal structures and also shows that the trapezoidal switching sequence outperforms the rectangular switch using the cat swarm optimization(CSO)approach.
基金supported by the National Key R&D Program of China(Grant No.2020YFB1806400)the China Scholarship Council(Grant No.202306230183)the National Natural Science Foundation of China(Grant Nos.62271305 and 62001287).
文摘We propose a joint look-up-table(LUT)-based nonlinear predistortion and digital resolution enhancement scheme to achieve high-speed and low-cost optical interconnects using low-resolution digital-to-analog converters(DACs).The LUT-based predistortion is employed to mitigate the patterndependent effect(PDE)of a semiconductor optical amplifier(SOA),while the digital resolution enhancer(DRE)is utilized to shape the quantization noise,lowering the requirement for the resolution of DAC.We experimentally demonstrate O-band intensity modulation and direct detection(IM/DD)transmission of 124-GBd 4∕6-level pulse-amplitude modulation ePAMT-4∕6 and 112-GBd PAM-8 signals over a 2-km standard single-mode fiber(SSMF)with 3∕3.5∕4-bit DACs.In the case of 40-km SSMF transmission with an SOAbased preamplifier,124-GBd on-off-keying(OOK)/PAM-3/PAM-4 signals are successfully transmitted with 1.5∕2∕3-bit DACs.To the best of our knowledge,we have achieved the highest net data rates of 235.3-Gb∕s PAM-4,289.7-Gb∕s PAM-6,and 294.7 Gb∕s PAM-8 signals over 2-km SSMF,as well as 117.6-Gb∕s OOK,173.8-Gb∕s PAM-3,and−231.8 Gb∕s PAM-4 signals over 40-km SSMF,employing low-resolution DACs.The experimental results reveal that the joint LUT-based predistortion and DRE effectively mitigate the PDE and improve the signal-to-quantization noise ratio by shaping the noise.The proposed scheme can provide a powerful solution for low-cost IM/DD optical interconnects beyond 200 Gb∕s.