为了明确忍冬根腐病的发生规律,以从忍冬根腐病株病根分离到的2种致病镰刀菌菌株FQ3(Fusarium solani species complex)、FQ4(Fusarium incarnatum-equiseti species complex)为研究对象,考察了其生物学特性。结果表明,菌株FQ3最适生长...为了明确忍冬根腐病的发生规律,以从忍冬根腐病株病根分离到的2种致病镰刀菌菌株FQ3(Fusarium solani species complex)、FQ4(Fusarium incarnatum-equiseti species complex)为研究对象,考察了其生物学特性。结果表明,菌株FQ3最适生长温度为30℃,最适产孢温度为35℃,最适生长pH值为9,最适产孢pH值为7~10,全黑暗条件最有利于菌丝生长和产孢,生长最适碳、氮源分别为乳糖和甘氨酸,产孢最适碳、氮源分别为葡萄糖和硝酸钠;菌株FQ4最适生长温度为25~30℃,最适产孢温度为30℃,最适生长pH值为7~10,最适产孢pH值为9,半光照条件有利于其生长和产孢,生长最适碳、氮源分别为蔗糖和酵母,产孢最适碳氮源分别为果糖和酵母。除温度处理外,菌株FQ3在所有参试条件下,菌丝生长速度及产孢量均明显高于菌株FQ4。展开更多
[Objective] The aim of this study was to breed new strains which have higher inhibitory effects on the pathogens of watermelon fusarium wilt.[Method] The endophytic Bacillus subtilis B47 strain was obtained from tomat...[Objective] The aim of this study was to breed new strains which have higher inhibitory effects on the pathogens of watermelon fusarium wilt.[Method] The endophytic Bacillus subtilis B47 strain was obtained from tomato stems by UV mutagenesis for two consecutive times,then genetic stability as well as physiological and biochemical properties of mutant strains were studied.[Result] The antibacterial activity of all the three mutant strains F303,F304 and F305 was higher than that of B74 strain.After subculture of 10 successive generations,the antibacterial activity of all the three mutant strains for the pathogens of watermelon fusarium wilt decreased,but the antibacterial activity of F305 strain decreased the least,indicating its best genetic stability among the tested strains.The antibacterial circle diameter of F305 strain was 5 mm larger than that of wild strain B47 under the same condition.The mutant strain F305 was in logarithmic growth phase within 36 h and in stationary phase within 36-96 h,while its optimum growth temperature was 35 ℃.F305 strain could grow in sodium salt with the concentration of 1%-10%,but it grew best at the concentration of 1%.Physiological and biochemical responses of F305 strain were in accordance with those of wild strain B47.[Conclusion] This study lays the foundation for the factorial production of antagonistic substance by B47 strain and new methods of preventing from the pathogens watermelon fusarium wilt.展开更多
文摘为了明确忍冬根腐病的发生规律,以从忍冬根腐病株病根分离到的2种致病镰刀菌菌株FQ3(Fusarium solani species complex)、FQ4(Fusarium incarnatum-equiseti species complex)为研究对象,考察了其生物学特性。结果表明,菌株FQ3最适生长温度为30℃,最适产孢温度为35℃,最适生长pH值为9,最适产孢pH值为7~10,全黑暗条件最有利于菌丝生长和产孢,生长最适碳、氮源分别为乳糖和甘氨酸,产孢最适碳、氮源分别为葡萄糖和硝酸钠;菌株FQ4最适生长温度为25~30℃,最适产孢温度为30℃,最适生长pH值为7~10,最适产孢pH值为9,半光照条件有利于其生长和产孢,生长最适碳、氮源分别为蔗糖和酵母,产孢最适碳氮源分别为果糖和酵母。除温度处理外,菌株FQ3在所有参试条件下,菌丝生长速度及产孢量均明显高于菌株FQ4。
基金Supported by the Fund of Science and Technology in GuangXi Zhuang Autonomous Region(0009018)~~
文摘[Objective] The aim of this study was to breed new strains which have higher inhibitory effects on the pathogens of watermelon fusarium wilt.[Method] The endophytic Bacillus subtilis B47 strain was obtained from tomato stems by UV mutagenesis for two consecutive times,then genetic stability as well as physiological and biochemical properties of mutant strains were studied.[Result] The antibacterial activity of all the three mutant strains F303,F304 and F305 was higher than that of B74 strain.After subculture of 10 successive generations,the antibacterial activity of all the three mutant strains for the pathogens of watermelon fusarium wilt decreased,but the antibacterial activity of F305 strain decreased the least,indicating its best genetic stability among the tested strains.The antibacterial circle diameter of F305 strain was 5 mm larger than that of wild strain B47 under the same condition.The mutant strain F305 was in logarithmic growth phase within 36 h and in stationary phase within 36-96 h,while its optimum growth temperature was 35 ℃.F305 strain could grow in sodium salt with the concentration of 1%-10%,but it grew best at the concentration of 1%.Physiological and biochemical responses of F305 strain were in accordance with those of wild strain B47.[Conclusion] This study lays the foundation for the factorial production of antagonistic substance by B47 strain and new methods of preventing from the pathogens watermelon fusarium wilt.