The pathogenesis-related proteins 1 (PR-1) gene family play important roles in the plant metabolism in response to biotic and abiotic stresses. The wheat TdPR1.2 has been previously isolated and characterized. Here we...The pathogenesis-related proteins 1 (PR-1) gene family play important roles in the plant metabolism in response to biotic and abiotic stresses. The wheat TdPR1.2 has been previously isolated and characterized. Here we showed by bio-informatic analysis that TdPR1.2 contains six cysteine residues that are conserved between all PR-1 proteins tested. Using ScanProsite tool, we found that TdPR1.2 structure has a CRISP family signature 1 and 2 located at the C-terminal part of the protein. Those two domains are conserved in many identified PR1.2 proteins in plants. Moreover, SignalIP-5.0 analysis revealed that TdPR1.2 contains a putative signal peptide formed by 25 amino acids at the N-terminal extremity. The presence of this signal peptide suggested that the mature proteins will be secreted after the cleavage of the signal sequence. Further, we investigate the role of the TdPR1.2 proteins in the growth of <i>Escherichia coli</i> transformants cells under different abiotic stresses. Our results showed that the full-length form of TdPR1.2 enhanced tolerance of <i>E. coli</i> against salt and osmotic stress but not to KCl. Moreover, TdPR1.2 protein confers bacterial tolerance to heavy metals in solid and liquid mediums. Based on these results, we suggest that the TdPR1.2 protein could play an important role in response to abiotic stress conditions.展开更多
Sugarcane smut disease( Ustilago scitaminea Sydow) is an important fungal disease worldwide,which seriously affects yield and quality of sugarcane and threatens the stability and development of sugarcane industry. Thi...Sugarcane smut disease( Ustilago scitaminea Sydow) is an important fungal disease worldwide,which seriously affects yield and quality of sugarcane and threatens the stability and development of sugarcane industry. This paper reviewed disease occurrence,damage,pathogen,symptoms,genetic diversity and detection methods of sugarcane smut,response of sugarcane to sugarcane smut stress and control measures of sugarcane smut. The in-depth research of sugarcane smut was also prospected,aiming to provide theoretical reference and scientific basis for the effective control of sugarcane smut.展开更多
Herpes viruses are responsible for a variety of pathological effects in humans and in both wild and domestic animals. One mechanism that has been proposed to facilitate replication and activity of herpes viruses is ox...Herpes viruses are responsible for a variety of pathological effects in humans and in both wild and domestic animals. One mechanism that has been proposed to facilitate replication and activity of herpes viruses is oxidative stress (OS). We used meta-analytical techniques to test the hypotheses that (1) herpes virus infection causes OS and (2) supplementation of antioxidants reduces virus load, indicating that replication is favoured by a state of OS. Results based on studies on mammals, including humans, and birds show that (1) OS is indeed increased by herpes virus infection across multiple tissues and species, (2) biomarkers of OS may change differently between tissues, and (3) the effect size does not differ among different virus strains. In addition, the increase of oxidative damage in blood (tissue commonly available in ecological studies) was similar to that in the tissues most sensitive to the herpes virus. Our results also show that administration of antioxidants re- duces virus yield, indicating that a condition of OS is favorable for the viral replication. In addition, some antioxidants may be more efficient than others in reducing herpes virus yield. Our results point to a potential mechanism linking herpes virus infection to individual health status.展开更多
文摘The pathogenesis-related proteins 1 (PR-1) gene family play important roles in the plant metabolism in response to biotic and abiotic stresses. The wheat TdPR1.2 has been previously isolated and characterized. Here we showed by bio-informatic analysis that TdPR1.2 contains six cysteine residues that are conserved between all PR-1 proteins tested. Using ScanProsite tool, we found that TdPR1.2 structure has a CRISP family signature 1 and 2 located at the C-terminal part of the protein. Those two domains are conserved in many identified PR1.2 proteins in plants. Moreover, SignalIP-5.0 analysis revealed that TdPR1.2 contains a putative signal peptide formed by 25 amino acids at the N-terminal extremity. The presence of this signal peptide suggested that the mature proteins will be secreted after the cleavage of the signal sequence. Further, we investigate the role of the TdPR1.2 proteins in the growth of <i>Escherichia coli</i> transformants cells under different abiotic stresses. Our results showed that the full-length form of TdPR1.2 enhanced tolerance of <i>E. coli</i> against salt and osmotic stress but not to KCl. Moreover, TdPR1.2 protein confers bacterial tolerance to heavy metals in solid and liquid mediums. Based on these results, we suggest that the TdPR1.2 protein could play an important role in response to abiotic stress conditions.
基金Supported by Sugar Crop Research System (CARS-170303)the Yunling Industry and Technology Leading Talent Training Program "Prevention and Control of Sugarcane Pests"(2018LJRC56)the Yunnan Province Agriculture Research System (YNGZTX-4-92)。
文摘Sugarcane smut disease( Ustilago scitaminea Sydow) is an important fungal disease worldwide,which seriously affects yield and quality of sugarcane and threatens the stability and development of sugarcane industry. This paper reviewed disease occurrence,damage,pathogen,symptoms,genetic diversity and detection methods of sugarcane smut,response of sugarcane to sugarcane smut stress and control measures of sugarcane smut. The in-depth research of sugarcane smut was also prospected,aiming to provide theoretical reference and scientific basis for the effective control of sugarcane smut.
文摘Herpes viruses are responsible for a variety of pathological effects in humans and in both wild and domestic animals. One mechanism that has been proposed to facilitate replication and activity of herpes viruses is oxidative stress (OS). We used meta-analytical techniques to test the hypotheses that (1) herpes virus infection causes OS and (2) supplementation of antioxidants reduces virus load, indicating that replication is favoured by a state of OS. Results based on studies on mammals, including humans, and birds show that (1) OS is indeed increased by herpes virus infection across multiple tissues and species, (2) biomarkers of OS may change differently between tissues, and (3) the effect size does not differ among different virus strains. In addition, the increase of oxidative damage in blood (tissue commonly available in ecological studies) was similar to that in the tissues most sensitive to the herpes virus. Our results also show that administration of antioxidants re- duces virus yield, indicating that a condition of OS is favorable for the viral replication. In addition, some antioxidants may be more efficient than others in reducing herpes virus yield. Our results point to a potential mechanism linking herpes virus infection to individual health status.