To address the problem of using fixed feature and single apparent model which is difficult to adapt to the complex scenarios, a Kernelized correlation filter target tracking algorithm based on online saliency feature ...To address the problem of using fixed feature and single apparent model which is difficult to adapt to the complex scenarios, a Kernelized correlation filter target tracking algorithm based on online saliency feature selection and fusion is proposed. It combined the correlation filter tracking framework and the salient feature model of the target. In the tracking process, the maximum Kernel correlation filter response values of different feature models were calculated respectively, and the response weights were dynamically set according to the saliency of different features. According to the filter response value, the final target position was obtained, which improves the target positioning accuracy. The target model was dynamically updated in an online manner based on the feature saliency measurement results. The experimental results show that the proposed method can effectively utilize the distinctive feature fusion to improve the tracking effect in complex environments.展开更多
基金the National Natural Science Foundation (61472196, 61672305)Natural Science Foundation of Shandong Province (BS2015DX010, ZR2015FM012)Key Research and Development Foundation of Shandong Province (2017GGX10133).
文摘To address the problem of using fixed feature and single apparent model which is difficult to adapt to the complex scenarios, a Kernelized correlation filter target tracking algorithm based on online saliency feature selection and fusion is proposed. It combined the correlation filter tracking framework and the salient feature model of the target. In the tracking process, the maximum Kernel correlation filter response values of different feature models were calculated respectively, and the response weights were dynamically set according to the saliency of different features. According to the filter response value, the final target position was obtained, which improves the target positioning accuracy. The target model was dynamically updated in an online manner based on the feature saliency measurement results. The experimental results show that the proposed method can effectively utilize the distinctive feature fusion to improve the tracking effect in complex environments.