宽带能量检测是被动声纳实现目标探测功能的常用方法,常规能量检测(Conventional Energy Detection,CED)方法在复杂环境下的检测性能迅速降低。子带峰值能量检测(Subband Peak Energy Detection,SPED)可以有效改善常规能量检测方法的性...宽带能量检测是被动声纳实现目标探测功能的常用方法,常规能量检测(Conventional Energy Detection,CED)方法在复杂环境下的检测性能迅速降低。子带峰值能量检测(Subband Peak Energy Detection,SPED)可以有效改善常规能量检测方法的性能,提高时间方位历程显示(BTR)的方位分辨力,但是波束宽度和旁瓣将影响SPED算法的性能。提出了一种将导向最小方差(Steered Minimum Variance,STMV)的宽带自适应波束形成与SPED结合的宽带检测新方法,通过海试数据的处理,表明这种基于STMV的SPED方法的性能优于基于常规波束形成(CBF)的SPED方法。展开更多
Traditional direction of arrival(DOA)estimation methods based on sparse reconstruction commonly use convex or smooth functions to approximate non-convex and non-smooth sparse representation problems.This approach ofte...Traditional direction of arrival(DOA)estimation methods based on sparse reconstruction commonly use convex or smooth functions to approximate non-convex and non-smooth sparse representation problems.This approach often introduces errors into the sparse representation model,necessitating the development of improved DOA estimation algorithms.Moreover,conventional DOA estimation methods typically assume that the signal coincides with a predetermined grid.However,in reality,this assumption often does not hold true.The likelihood of a signal not aligning precisely with the predefined grid is high,resulting in potential grid mismatch issues for the algorithm.To address the challenges associated with grid mismatch and errors in sparse representation models,this article proposes a novel high-performance off-grid DOA estimation approach based on iterative proximal projection(IPP).In the proposed method,we employ an alternating optimization strategy to jointly estimate sparse signals and grid offset parameters.A proximal function optimization model is utilized to address non-convex and non-smooth sparse representation problems in DOA estimation.Subsequently,we leverage the smoothly clipped absolute deviation penalty(SCAD)function to compute the proximal operator for solving the model.Simulation and sea trial experiments have validated the superiority of the proposed method in terms of higher resolution and more accurate DOA estimation performance when compared to both traditional sparse reconstruction methods and advanced off-grid techniques.展开更多
累积和检测方法是根据声呐目标信号出现与消失时概率密度函数(Probability Distribution Function,PDF)的变化进行有效的瞬态信号检测。以非高斯模型t分布假设替代传统的高斯分布方差变化假设作为描述瞬态信号的PDF形式,推导了累积和检...累积和检测方法是根据声呐目标信号出现与消失时概率密度函数(Probability Distribution Function,PDF)的变化进行有效的瞬态信号检测。以非高斯模型t分布假设替代传统的高斯分布方差变化假设作为描述瞬态信号的PDF形式,推导了累积和检验统计量的表达、更新量PDF求取的数值方法,利用快速傅里叶变换法计算了门限和自由度等检测参数。利用仿真的落水信号、船体加速信号和消声水池实验数据进行检验。结果表明,基于t分布假设的累积和方法对瞬态脉冲信号的检测效果优于常规累积和方法,能更快地响应信号变化,更好地抑制背景干扰。展开更多
文摘宽带能量检测是被动声纳实现目标探测功能的常用方法,常规能量检测(Conventional Energy Detection,CED)方法在复杂环境下的检测性能迅速降低。子带峰值能量检测(Subband Peak Energy Detection,SPED)可以有效改善常规能量检测方法的性能,提高时间方位历程显示(BTR)的方位分辨力,但是波束宽度和旁瓣将影响SPED算法的性能。提出了一种将导向最小方差(Steered Minimum Variance,STMV)的宽带自适应波束形成与SPED结合的宽带检测新方法,通过海试数据的处理,表明这种基于STMV的SPED方法的性能优于基于常规波束形成(CBF)的SPED方法。
基金supported by the National Science Foundation for Distinguished Young Scholars(Grant No.62125104)the National Natural Science Foundation of China(Grant No.52071111).
文摘Traditional direction of arrival(DOA)estimation methods based on sparse reconstruction commonly use convex or smooth functions to approximate non-convex and non-smooth sparse representation problems.This approach often introduces errors into the sparse representation model,necessitating the development of improved DOA estimation algorithms.Moreover,conventional DOA estimation methods typically assume that the signal coincides with a predetermined grid.However,in reality,this assumption often does not hold true.The likelihood of a signal not aligning precisely with the predefined grid is high,resulting in potential grid mismatch issues for the algorithm.To address the challenges associated with grid mismatch and errors in sparse representation models,this article proposes a novel high-performance off-grid DOA estimation approach based on iterative proximal projection(IPP).In the proposed method,we employ an alternating optimization strategy to jointly estimate sparse signals and grid offset parameters.A proximal function optimization model is utilized to address non-convex and non-smooth sparse representation problems in DOA estimation.Subsequently,we leverage the smoothly clipped absolute deviation penalty(SCAD)function to compute the proximal operator for solving the model.Simulation and sea trial experiments have validated the superiority of the proposed method in terms of higher resolution and more accurate DOA estimation performance when compared to both traditional sparse reconstruction methods and advanced off-grid techniques.
文摘累积和检测方法是根据声呐目标信号出现与消失时概率密度函数(Probability Distribution Function,PDF)的变化进行有效的瞬态信号检测。以非高斯模型t分布假设替代传统的高斯分布方差变化假设作为描述瞬态信号的PDF形式,推导了累积和检验统计量的表达、更新量PDF求取的数值方法,利用快速傅里叶变换法计算了门限和自由度等检测参数。利用仿真的落水信号、船体加速信号和消声水池实验数据进行检验。结果表明,基于t分布假设的累积和方法对瞬态脉冲信号的检测效果优于常规累积和方法,能更快地响应信号变化,更好地抑制背景干扰。