This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite mate...This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite materials and high-performance ballistic projectiles. Four armour materials, consisted of front hybrid fibre reinforced polymer cover layer, ceramic strike-face, fibre reinforced polymer intermediate layer and the metal matrix composite reinforced backplate, were manufactured and assembled by adhesive technology. The proposed laminated protection system is suitable for armoured ground vehicles;however, it could be used as armour on ground, air and naval platforms. The design of the protection system, including material selection and thickness, was elaborated depending on the performance requirements of Level 4 + STANAG 4569 military standard(projectile 14.5 mm × 114 mm API B32) and especially on a design philosophy which is analysed with the specifications. The backplate of this new composite is a hybrid material of Metal Matrix Composite(MMC) reinforced with carbon nanotubes(CNTs), manufactured with the use of powder metallurgy technique. The composite backplate material was morphologically, mechanically and chemically analysed. Results show that all plates are presenting high mechanical properties and ballistic characteristics, compared to commonly used armour plates. Real military ballistic tests according to AEP-STANAG 4569 were carried out for the total composite armour systems. After the ballistic tests, AA2024-CNT3 showed the best protection results, compared with the other plates(AA2024-CNT1 and AA2024-CNT2), with the projectile being unable to fully penetrate the composite plate.展开更多
The corrosion and passive behavior of HP-13Cr stainless steel(HP-13Cr SS)in formate annulus protection fluid was investigated.HP-13Cr SS exhibited good passive behavior in clean formate annulus protection fluid,which ...The corrosion and passive behavior of HP-13Cr stainless steel(HP-13Cr SS)in formate annulus protection fluid was investigated.HP-13Cr SS exhibited good passive behavior in clean formate annulus protection fluid,which was attributed to a thinner and more dense passive film mainly composed of Cr_(2)O_(3).In the formation water solution,the passive film was composed of metastable Cr(OH)3,which was explained by the isoelectric point theory,resulting in the deterioration of the passive behavior of HP-13Cr SS.When the formation water penetrated the formate annulus protection fluid,a large number of loose FeCO_(3)particles formed in the corrosion scales,thus HP-13Cr SS suffered severe corrosion.Therefore,avoiding formation water penetrating the formate annulus protection fluid is conducive to improving the service life of HP-13Cr SS oil tubes in extremely aggressive environment.展开更多
基金the Research and Development department of EODH SA and has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness,Entrepreneurship and Innovation,under the call RESEARCH-CREATE-INNOVATE(project code:T1EDK-04429).
文摘This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite materials and high-performance ballistic projectiles. Four armour materials, consisted of front hybrid fibre reinforced polymer cover layer, ceramic strike-face, fibre reinforced polymer intermediate layer and the metal matrix composite reinforced backplate, were manufactured and assembled by adhesive technology. The proposed laminated protection system is suitable for armoured ground vehicles;however, it could be used as armour on ground, air and naval platforms. The design of the protection system, including material selection and thickness, was elaborated depending on the performance requirements of Level 4 + STANAG 4569 military standard(projectile 14.5 mm × 114 mm API B32) and especially on a design philosophy which is analysed with the specifications. The backplate of this new composite is a hybrid material of Metal Matrix Composite(MMC) reinforced with carbon nanotubes(CNTs), manufactured with the use of powder metallurgy technique. The composite backplate material was morphologically, mechanically and chemically analysed. Results show that all plates are presenting high mechanical properties and ballistic characteristics, compared to commonly used armour plates. Real military ballistic tests according to AEP-STANAG 4569 were carried out for the total composite armour systems. After the ballistic tests, AA2024-CNT3 showed the best protection results, compared with the other plates(AA2024-CNT1 and AA2024-CNT2), with the projectile being unable to fully penetrate the composite plate.
基金supported by the Youth Program of the National Natural Science Foundation of China(No.52001061)the Young Elite Scientist Sponsorship Program Cast(No.YESS20200139)the Fundamental Research Funds for the Central Universities(No.N2202016).
文摘The corrosion and passive behavior of HP-13Cr stainless steel(HP-13Cr SS)in formate annulus protection fluid was investigated.HP-13Cr SS exhibited good passive behavior in clean formate annulus protection fluid,which was attributed to a thinner and more dense passive film mainly composed of Cr_(2)O_(3).In the formation water solution,the passive film was composed of metastable Cr(OH)3,which was explained by the isoelectric point theory,resulting in the deterioration of the passive behavior of HP-13Cr SS.When the formation water penetrated the formate annulus protection fluid,a large number of loose FeCO_(3)particles formed in the corrosion scales,thus HP-13Cr SS suffered severe corrosion.Therefore,avoiding formation water penetrating the formate annulus protection fluid is conducive to improving the service life of HP-13Cr SS oil tubes in extremely aggressive environment.