Severe earthquakes continue to cause major catastrophes. Many devices in active, hybrid, and semi-active structural control systems which are used as controllable force devices are costly to build and maintain. The pa...Severe earthquakes continue to cause major catastrophes. Many devices in active, hybrid, and semi-active structural control systems which are used as controllable force devices are costly to build and maintain. The passive control reinforced concrete frame (PCRCF) reinforced with high strength steel only in the columns presented here provides structural systems more resistance to lateral earthquake loadings at comparatively lower cost. The effectiveness is demonstrated by a nonlinear static analysis using fiber model for a single story single bay frame. The study shows that the use of high performance steel in columns prevents formation of plastic hinges at the critical column base sections and failures are always initiated by reinforcement yielding at the beam ends. Furthermore, after experiencing severe lateral drift, the passive control design has small residual displacements compared to ordinary reinforced concrete frames. PCRCF rehabilitation and strengthening can be achieved more easily as compared with ordinary reinforced concrete frame.展开更多
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20040003095) and the Cul-tivation Fund of the Key Grant Scientific and Technical Innova-tion Project, Ministry of Education of China (No. 704003)
文摘Severe earthquakes continue to cause major catastrophes. Many devices in active, hybrid, and semi-active structural control systems which are used as controllable force devices are costly to build and maintain. The passive control reinforced concrete frame (PCRCF) reinforced with high strength steel only in the columns presented here provides structural systems more resistance to lateral earthquake loadings at comparatively lower cost. The effectiveness is demonstrated by a nonlinear static analysis using fiber model for a single story single bay frame. The study shows that the use of high performance steel in columns prevents formation of plastic hinges at the critical column base sections and failures are always initiated by reinforcement yielding at the beam ends. Furthermore, after experiencing severe lateral drift, the passive control design has small residual displacements compared to ordinary reinforced concrete frames. PCRCF rehabilitation and strengthening can be achieved more easily as compared with ordinary reinforced concrete frame.