The emergence of perovskite solar cells(PSCs) has greatly promoted the progress of photovoltaic technologies.The rapid development of PSCs has been driven by the advances in optimizing perovskite films and their adjac...The emergence of perovskite solar cells(PSCs) has greatly promoted the progress of photovoltaic technologies.The rapid development of PSCs has been driven by the advances in optimizing perovskite films and their adjacent interfaces.However,the polycrystalline perovskite layers in most highly efficient PSCs still contain various defects that greatly limit photovoltaic performance and stability of the devices.Herein,we introduce a multifunctional additive ethylene diamine tetra methylene phosphonic sodium(EDTMPS) with multiple anchor points into the precursor of perovskite to improve the efficiency and stability of PSCs and provide in-situ protection of lead leakage.The addition of EDTMPS acts as a crystal growth controller and passivation agent for perovskite films,thereby slowing down the crystallization rate of the film and obtaining high-quality perovskite films.Our study also provides an insight into how the modifier modulate the interfacial energy level arrangement as well as affect transfer of charge carriers and their recombination under photoinduced excitation.As a result,the power conversion efficiency(PCE) of single subcell with a working area of 0.255 cm^(2) increases significantly from 20.03% to 23.37%.Moreover,we obtained a PCE of 19.16% for the 25 cm^(2) module.Importantly,the unencapsulated EDTMP-modified PSCs exhibit better operational and thermal stability,as well as in-situ absorption of leaked lead ions.展开更多
HIT(Heterojunction with intrinsic thin-layer)太阳能电池,即具有本征非晶硅薄层的异质结太阳能电池,利用了非晶硅薄膜/单晶硅衬底的异质结结构,从而结合了单晶硅和非晶硅太阳能电池优良的特点。这种类型结构的电池可以在较低温度下(&...HIT(Heterojunction with intrinsic thin-layer)太阳能电池,即具有本征非晶硅薄层的异质结太阳能电池,利用了非晶硅薄膜/单晶硅衬底的异质结结构,从而结合了单晶硅和非晶硅太阳能电池优良的特点。这种类型结构的电池可以在较低温度下(<250℃)制造,具有良好的光照稳定性和温度稳定性,成本低而且效率高,目前效率达到26.7%。文章简述了HIT太阳能电池的结构和工作原理,并且总结了HIT电池的研究和应用现状。除此之外,还分析了提高HIT太阳能电池效率的方法以及HIT电池广阔的应用前景和巨大的商业化潜力。展开更多
Despite the recent progress on controllable synthesis of alkynyl-protected Au nanoclusters,the effective synthetic means are very limited and the cluster formation process still remains puzzling.Here,we develop a nove...Despite the recent progress on controllable synthesis of alkynyl-protected Au nanoclusters,the effective synthetic means are very limited and the cluster formation process still remains puzzling.Here,we develop a novel synchronous nucleation and passivation strategy to fabricate Au36(PA)24(PA=phenylacetylenyl) nanoclusters with high yield.In Au36(PA)24formation process,Au22(PA)18as key intermediate was identified.Meanwhile,Au22(PA)18can be synthesized under a low amount of reductant,and by employing more reductants,Au22(PA)18can turn into Au36(PA)24eventually.Moreover,the structure evolution from Au22(PA)18to Au36(PA)24is proposed,where four Au13cuboctahedra can yield one Au28kernel.Finally,the ratiocination is verified by the good accordance between the predicted intermediate/product ratio and the experimental value.This study not only offers a novel synthetic strategy,but also sheds light on understanding the structural evolution process of alkynyl-protected Au nanoclusters at atomic level.展开更多
基金the financial support from the Taishan Scholar Project of Shandong Province (tsqn201812098)the National Natural Science Foundation of China (62275115)+5 种基金the Shandong Provincial Natural Science Foundation (ZR2020MF103)the Yantai City University Integration Development Project (2021XDRHXMXK26)the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciencesthe Natural Science Foundation of the Jiangsu Higher Education Institutions of China (22KJB510038)the Carbon Neutrality Innovation Research Center in Ludong UniversityLarge Instruments Open Foundation of Nantong University。
文摘The emergence of perovskite solar cells(PSCs) has greatly promoted the progress of photovoltaic technologies.The rapid development of PSCs has been driven by the advances in optimizing perovskite films and their adjacent interfaces.However,the polycrystalline perovskite layers in most highly efficient PSCs still contain various defects that greatly limit photovoltaic performance and stability of the devices.Herein,we introduce a multifunctional additive ethylene diamine tetra methylene phosphonic sodium(EDTMPS) with multiple anchor points into the precursor of perovskite to improve the efficiency and stability of PSCs and provide in-situ protection of lead leakage.The addition of EDTMPS acts as a crystal growth controller and passivation agent for perovskite films,thereby slowing down the crystallization rate of the film and obtaining high-quality perovskite films.Our study also provides an insight into how the modifier modulate the interfacial energy level arrangement as well as affect transfer of charge carriers and their recombination under photoinduced excitation.As a result,the power conversion efficiency(PCE) of single subcell with a working area of 0.255 cm^(2) increases significantly from 20.03% to 23.37%.Moreover,we obtained a PCE of 19.16% for the 25 cm^(2) module.Importantly,the unencapsulated EDTMP-modified PSCs exhibit better operational and thermal stability,as well as in-situ absorption of leaked lead ions.
文摘HIT(Heterojunction with intrinsic thin-layer)太阳能电池,即具有本征非晶硅薄层的异质结太阳能电池,利用了非晶硅薄膜/单晶硅衬底的异质结结构,从而结合了单晶硅和非晶硅太阳能电池优良的特点。这种类型结构的电池可以在较低温度下(<250℃)制造,具有良好的光照稳定性和温度稳定性,成本低而且效率高,目前效率达到26.7%。文章简述了HIT太阳能电池的结构和工作原理,并且总结了HIT电池的研究和应用现状。除此之外,还分析了提高HIT太阳能电池效率的方法以及HIT电池广阔的应用前景和巨大的商业化潜力。
基金This work was supported by Guangdong Natural Science Funds for Distinguished Young Scholars(2015A030306006)Guangzhou Science and Technology Plan Projects(201804010323)+1 种基金the fundamental funds for central universities(SCUT,2018ZD022)the National Natural Science Foundation of China(21971070).
文摘Despite the recent progress on controllable synthesis of alkynyl-protected Au nanoclusters,the effective synthetic means are very limited and the cluster formation process still remains puzzling.Here,we develop a novel synchronous nucleation and passivation strategy to fabricate Au36(PA)24(PA=phenylacetylenyl) nanoclusters with high yield.In Au36(PA)24formation process,Au22(PA)18as key intermediate was identified.Meanwhile,Au22(PA)18can be synthesized under a low amount of reductant,and by employing more reductants,Au22(PA)18can turn into Au36(PA)24eventually.Moreover,the structure evolution from Au22(PA)18to Au36(PA)24is proposed,where four Au13cuboctahedra can yield one Au28kernel.Finally,the ratiocination is verified by the good accordance between the predicted intermediate/product ratio and the experimental value.This study not only offers a novel synthetic strategy,but also sheds light on understanding the structural evolution process of alkynyl-protected Au nanoclusters at atomic level.