期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于PELCD样本熵的抗蛇行减振器故障诊断 被引量:2
1
作者 郑航 李刚 李德仓 《电力机车与城轨车辆》 2023年第6期34-41,共8页
长期高速运行的服役状态会造成列车转向架关键部件性能蜕化甚至故障等情况,导致的安全事件将造成严重的经济损失甚至人员伤亡。文章针对列车振动信号非线性、非平稳的特点,以部分集成局部特征尺度分解(PELCD)方法对高速列车抗蛇行减振... 长期高速运行的服役状态会造成列车转向架关键部件性能蜕化甚至故障等情况,导致的安全事件将造成严重的经济损失甚至人员伤亡。文章针对列车振动信号非线性、非平稳的特点,以部分集成局部特征尺度分解(PELCD)方法对高速列车抗蛇行减振器失效的故障振动信号进行分解,并且对相关性较强的前6个分量进行样本熵特征提取,将互补集合经验模态分解(CEEMD)方法与样本熵结合的结果进行对比,最后将CEEMD样本熵与PELCD样本熵两种方法下所得到的特征向量作为支持向量机的样本进行故障训练与故障预测。对比二者的结果表明PELCD与样本熵的结合能够有效地识别出列车的故障类别。 展开更多
关键词 部分集成局部特征尺度分解(pelcd) 样本熵 故障诊断 抗蛇行减振器
下载PDF
基于部分集成局部特征尺度分解与拉普拉斯分值的滚动轴承故障诊断模型 被引量:6
2
作者 程军圣 郑近德 +1 位作者 杨宇 罗颂荣 《振动工程学报》 EI CSCD 北大核心 2014年第6期942-950,共9页
提出了一种基于部分集成局部特征尺度分解(Partly ensemble local characteristic-scale decomposition,PELCD)、拉普拉斯分值(Laplacian score,LS)特征选择和基于变量预测模型模式分类(Variable predictive model based class discrimi... 提出了一种基于部分集成局部特征尺度分解(Partly ensemble local characteristic-scale decomposition,PELCD)、拉普拉斯分值(Laplacian score,LS)特征选择和基于变量预测模型模式分类(Variable predictive model based class discrimination,VPMCD)的滚动轴承故障诊断模型。PELCD是新提出的一种基于噪声辅助数据分析方法,克服了局部特征尺度分解的模态混淆问题,与传统的基于噪声辅助数据分析方法相比有一定的优越性,论文将其应用于滚动轴承振动信号的预处理。之后提取振动信号PELCD分量的时域和频域统计特征及振动信号的时频联合域特征;同时为了降低特征向量维数,提高诊断效率,采用LS优化特征向量。再将优化的特征向量输入到VPMCD分类器进行训练和测试。滚动轴承实验数据分析结果表明该模型能够有效地诊断故障程度和故障类型。 展开更多
关键词 故障诊断 滚动轴承 部分集成局部特征尺度分解 变量预测模型 拉普拉斯分值
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部