期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于支持向量机的中国股指期货回归预测研究 被引量:29
1
作者 赛英 张凤廷 张涛 《中国管理科学》 CSSCI 北大核心 2013年第3期35-39,共5页
本文针对股指期货预测的特点,选择对股指期货指数有重要影响的相关指标,首次提出用支持向量机(SVM)方法对其进行回归预测,并用遗传算法(GA)和粒子群算法(PSO)分别优化四种不同核函数的支持向量机,构建了八种不同的中国股指期货回归预测... 本文针对股指期货预测的特点,选择对股指期货指数有重要影响的相关指标,首次提出用支持向量机(SVM)方法对其进行回归预测,并用遗传算法(GA)和粒子群算法(PSO)分别优化四种不同核函数的支持向量机,构建了八种不同的中国股指期货回归预测方案,用实证研究的方法对这八种方案的准确性和时效性进行了比较。实验结果表明粒子群算法优化的线性核函数支持向量机作为中国股指期货回归预测的模型,具有更好的预测效果。 展开更多
关键词 中国股指期货 支持向量机 遗传算法 粒子群算法 回归预测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部