A massive bloom of the giant jellyfi sh Nemopilema nomurai occurred in waters off Qinhuangdao,a port city in Hebei Province,in July 2013.However,jellyfi sh larvae were not found in this location during the previous wi...A massive bloom of the giant jellyfi sh Nemopilema nomurai occurred in waters off Qinhuangdao,a port city in Hebei Province,in July 2013.However,jellyfi sh larvae were not found in this location during the previous winter and spring.To determine the possible origin of the giant jellyfi sh medusa in the Bohai Sea,we developed a backward particle-tracking model and a series of numerical simulations were conducted by using the hydrodynamic,three-dimensional Regional Ocean Modeling System(ROMS)results.The simulated results showed that passive particles,representing jellyfi sh medusae,released in surface waters at diff erent dates during the summer had consistent trajectories.Particles released at the sea surface on August1 and 15 could be traced back to the center of the Bohai Sea and to waters between Feiyan Shoal and the new Huanghe(Yellow)River estuary.Particles released on July 1 and 15 could also be traced back to the center of the Bohai Sea and to waters between Feiyan Shoal and only to Zhuangxi tide station.However,none of the particles released in the middle and bottom water layers could be traced back to those areas.Based on the results of the numerical simulations,the distribution characteristics of seafl oor sediments,and observational data for giant jellyfi sh in the region,we suggest that waters between Feiyan Shoal and the new Huanghe River estuary are the likely origin of giant jellyfi sh observed near Qinhuangdao in summer.展开更多
The particle path tracking method is proposed and used in two-dimensional(2D) and three-dimensional(3D) numerical simulations of continuously rotating detonation engines(CRDEs). This method is used to analyze th...The particle path tracking method is proposed and used in two-dimensional(2D) and three-dimensional(3D) numerical simulations of continuously rotating detonation engines(CRDEs). This method is used to analyze the combustion and expansion processes of the fresh particles, and the thermodynamic cycle process of CRDE. In a 3D CRDE flow field, as the radius of the annulus increases, the no-injection area proportion increases, the non-detonation proportion decreases, and the detonation height decreases. The flow field parameters on the 3D mid annulus are different from in the 2D flow field under the same chamber size. The non-detonation proportion in the 3D flow field is less than in the 2D flow field. In the 2D and 3D CRDE, the paths of the flow particles have only a small fluctuation in the circumferential direction. The numerical thermodynamic cycle processes are qualitatively consistent with the three ideal cycle models, and they are right in between the ideal F–J cycle and ideal ZND cycle. The net mechanical work and thermal efficiency are slightly smaller in the 2D simulation than in the 3D simulation. In the 3D CRDE, as the radius of the annulus increases, the net mechanical work is almost constant, and the thermal efficiency increases. The numerical thermal efficiencies are larger than F–J cycle, and much smaller than ZND cycle.展开更多
This paper compares numerical modeling of the effect of stress on solute transport (advection and matrix diffusion) in fractured rocks in which fracture apertures are correlated with fracture lengths. It is mainly m...This paper compares numerical modeling of the effect of stress on solute transport (advection and matrix diffusion) in fractured rocks in which fracture apertures are correlated with fracture lengths. It is mainly motivated by the performance and safety assessments of underground radioactive waste repositories. Five research teams used different approaches to model stress/deformation, flow and transport pro- cesses, based on either discrete fracture network or equivalent continuum models. The simulation results derived by various teams generally demonstrated that rock stresses could significantly influence solute transport processes through stress-induced changes in fracture apertures and associated changes in per- meability. Reasonably good agreement was achieved regarding advection and matrix diffusion given the same fracture network, while some observed discrepancies could be explained by different mechanical or transport modeling approaches.展开更多
The targeted drug delivery and targeted drug therapy transport a drug directly to the center of the disease under various conditions and thereby treat it deliber- ately without effects on the body. This paper studies ...The targeted drug delivery and targeted drug therapy transport a drug directly to the center of the disease under various conditions and thereby treat it deliber- ately without effects on the body. This paper studies the magnetic drug targeting (MDT) technique by particle tracking in the presence of magnetic field in bifurcation vessels of a healthy person and a diabetes patient. The Lagrangian particle tracking is performed to estimate particle behavior under effects of imposed magnetic field gradients along the bifurcation. The results show that the magnetic field increases the volume fraction of particle in the target region, and the efficiency of MDT on a patient with the diabetes disease is better than a healthy person. Also, for the higher magnetic numbers, the flow in the upper branch is strongly affected by the magnetic field.展开更多
基金Supported by the National Special Research Fund for Non-Profi t Marine Sector(No.201005018)the Open Fund of Key Laboratory of Ocean Circulation and Waves,Institute of Oceanology,Chinese Academy of Sciences(No.KLOCAW1403)
文摘A massive bloom of the giant jellyfi sh Nemopilema nomurai occurred in waters off Qinhuangdao,a port city in Hebei Province,in July 2013.However,jellyfi sh larvae were not found in this location during the previous winter and spring.To determine the possible origin of the giant jellyfi sh medusa in the Bohai Sea,we developed a backward particle-tracking model and a series of numerical simulations were conducted by using the hydrodynamic,three-dimensional Regional Ocean Modeling System(ROMS)results.The simulated results showed that passive particles,representing jellyfi sh medusae,released in surface waters at diff erent dates during the summer had consistent trajectories.Particles released at the sea surface on August1 and 15 could be traced back to the center of the Bohai Sea and to waters between Feiyan Shoal and the new Huanghe(Yellow)River estuary.Particles released on July 1 and 15 could also be traced back to the center of the Bohai Sea and to waters between Feiyan Shoal and only to Zhuangxi tide station.However,none of the particles released in the middle and bottom water layers could be traced back to those areas.Based on the results of the numerical simulations,the distribution characteristics of seafl oor sediments,and observational data for giant jellyfi sh in the region,we suggest that waters between Feiyan Shoal and the new Huanghe River estuary are the likely origin of giant jellyfi sh observed near Qinhuangdao in summer.
文摘The particle path tracking method is proposed and used in two-dimensional(2D) and three-dimensional(3D) numerical simulations of continuously rotating detonation engines(CRDEs). This method is used to analyze the combustion and expansion processes of the fresh particles, and the thermodynamic cycle process of CRDE. In a 3D CRDE flow field, as the radius of the annulus increases, the no-injection area proportion increases, the non-detonation proportion decreases, and the detonation height decreases. The flow field parameters on the 3D mid annulus are different from in the 2D flow field under the same chamber size. The non-detonation proportion in the 3D flow field is less than in the 2D flow field. In the 2D and 3D CRDE, the paths of the flow particles have only a small fluctuation in the circumferential direction. The numerical thermodynamic cycle processes are qualitatively consistent with the three ideal cycle models, and they are right in between the ideal F–J cycle and ideal ZND cycle. The net mechanical work and thermal efficiency are slightly smaller in the 2D simulation than in the 3D simulation. In the 3D CRDE, as the radius of the annulus increases, the net mechanical work is almost constant, and the thermal efficiency increases. The numerical thermal efficiencies are larger than F–J cycle, and much smaller than ZND cycle.
基金the context of the international DECOVALEX-2011 ProjectLBNL from NDA via SERCO TAS was provided through the U.S. Department of Energy Contract No. DE-AC02-05CH11231supported by the Ministry of Education of the Czech Republic within the SGS project No. 7822/115 on the TUL
文摘This paper compares numerical modeling of the effect of stress on solute transport (advection and matrix diffusion) in fractured rocks in which fracture apertures are correlated with fracture lengths. It is mainly motivated by the performance and safety assessments of underground radioactive waste repositories. Five research teams used different approaches to model stress/deformation, flow and transport pro- cesses, based on either discrete fracture network or equivalent continuum models. The simulation results derived by various teams generally demonstrated that rock stresses could significantly influence solute transport processes through stress-induced changes in fracture apertures and associated changes in per- meability. Reasonably good agreement was achieved regarding advection and matrix diffusion given the same fracture network, while some observed discrepancies could be explained by different mechanical or transport modeling approaches.
文摘The targeted drug delivery and targeted drug therapy transport a drug directly to the center of the disease under various conditions and thereby treat it deliber- ately without effects on the body. This paper studies the magnetic drug targeting (MDT) technique by particle tracking in the presence of magnetic field in bifurcation vessels of a healthy person and a diabetes patient. The Lagrangian particle tracking is performed to estimate particle behavior under effects of imposed magnetic field gradients along the bifurcation. The results show that the magnetic field increases the volume fraction of particle in the target region, and the efficiency of MDT on a patient with the diabetes disease is better than a healthy person. Also, for the higher magnetic numbers, the flow in the upper branch is strongly affected by the magnetic field.