The particle motions of dispersion and transport in air channel flow are investigated using a large eddy simulation(LES) and Lagrangian trajectory method. The mean and fluctuating velocities of the fluids and partic...The particle motions of dispersion and transport in air channel flow are investigated using a large eddy simulation(LES) and Lagrangian trajectory method. The mean and fluctuating velocities of the fluids and particles are obtained,and the results are in good agreement with the data in the literature. Particle clustering is observed in the near-wall and low-speed regions. To reveal the evolution process and mechanism of particle dispersion and transport in the turbulent boundary layer, a multi-group Lagrangian tracking is applied when the two-phase flow has become fully developed: the fluid fields are classified into four sub-regions based on the flow characteristics, and particles in the turbulent region are divided accordingly into four groups when the gas–particle flow is fully developed. The spatiotemporal transport of the four groups of particles is then tracked and analyzed. The detailed relationship between particle dispersion and turbulent motion is investigated and discussed.展开更多
Choanoid fluidized bed bioreactors (CFBBs) are newly developed core devices used in bioartificial liver- support systems to detoxify blood plasma of patients with microencapsulated liver cells. Direct numerical simu...Choanoid fluidized bed bioreactors (CFBBs) are newly developed core devices used in bioartificial liver- support systems to detoxify blood plasma of patients with microencapsulated liver cells. Direct numerical simulations (DNS) with a direct-forcing/fictitious domain (DF/FD) method were conducted to study the hydrodynamic performance of a CFBB. The effects of particle-fluid density ratio, particle number, and fil- ter screens preventing particles flowing out of the reactor were investigated. Depending on density ratio, two flow patterns are evident: the circulation mode in which the suspension rises along one sidewall and descends along the other sidewall, and the non-circulation mode in which the whole suspension roughly flows upward. The circulation mode takes place under non-neutral-buoyancy where the particle sedimentation dominates, whereas the non-circulation mode occurs under pure or near-neutral buoy- ancy with particle-fluid density ratios of unity or near unity. With particle-fluid density ratio of 1.01, the bioartificial liver reactor performs optimally as the significant particle accumulation existing in the non-circulation mode and the large shear forces on particles in the circulation mode are avoided. At higher particle volume fractions, more particles accumulate at the filter screens and a secondary counter circulation to the primary flow is observed at the top of the bed. Modelled as porous media, the filter screens play a negative role on particle fluidization velocities; without screens, particles are fluidized faster because of the higher fluid velocities in the jet center region. This work extends the DF/FD-based DNS to a fluidized bed and accounts for effects from inclined side walls and porous media, providing some hydrodynamics insight that is important for CFBB design and operation optimization.展开更多
低氧稀释(moderate and intense low-oxygen dilution,MILD)燃烧具有传热均匀、NO_x污染物排放低的特点。新一代MILD煤粉燃烧技术主要通过高速射流引起强烈的湍流混合来实现。其中,煤颗粒在高速射流中的扩散行为非常关键。目前对球形颗...低氧稀释(moderate and intense low-oxygen dilution,MILD)燃烧具有传热均匀、NO_x污染物排放低的特点。新一代MILD煤粉燃烧技术主要通过高速射流引起强烈的湍流混合来实现。其中,煤颗粒在高速射流中的扩散行为非常关键。目前对球形颗粒在气固射流中扩散行为的研究已非常深入,然而化石燃料属于典型的非球形颗粒,其在射流中的扩散行为与球形颗粒具有一定的差异,该类非球形颗粒在高速射流下的扩散特性值得进一步研究。为此,该文采用玻璃珠、玻璃渣和煤粉等颗粒开展了宽Re范围下的高速两相圆射流实验,通过激光Doppler相位分析技术(phase-Doppler anemometry,PDA)获取并分析了颗粒的质量浓度、速度及湍动能分布随球形度、粒径以及射流速度的变化规律。结果表明:非球形颗粒在射流中的质量浓度、速度、湍动能分布与粒径较小的球形颗粒具有一定相似性,但其扩散行为不能仅通过Stokes数进行定量表征,除曳力之外,升力对非球形颗粒扩散也具有一定影响;与球形颗粒相比,非球形颗粒的扩散更为显著,其主要原因是其径向湍动能显著增强所致;射流速度的增加促进了颗粒的剪切层集聚和径向扩散,对非球形颗粒的促进作用更强。展开更多
The study of nano- and submicron Brownian particle-laden turbulent flow has wide industrial applicability and hence has received much attention. The purpose of the present paper is to provide and review some researche...The study of nano- and submicron Brownian particle-laden turbulent flow has wide industrial applicability and hence has received much attention. The purpose of the present paper is to provide and review some researches in this field. The topics are related to the universality, particularity, complexity and importance of nano- and submicron Brownian particle-laden turbulent flow, the models of particle general dynamical equation, the collision behavior of particles. Finally, several open research issues are identified.展开更多
Axis-symmetric spheroids, such as rod-like and disk-like particles, have been found to orient preferentially in near-wall turbulence by both experiment and numerical simulation. In current work we examined the orienta...Axis-symmetric spheroids, such as rod-like and disk-like particles, have been found to orient preferentially in near-wall turbulence by both experiment and numerical simulation. In current work we examined the orientation of inertialess spheroids in a turbulent channel flow at medium friction Reynolds number Reτ=100 given based on the half of channel height. Both elongated prolate spheroid and flat oblate spheroid are considered and further compared with the reference case of spherical particle. The statistical results show that in near wall region the prolate spheroids tend to align in the streamwise direction while the oblate spheroids prefer to orient in the wallnormal direction, which are consistent with earlier observation in low Reynolds number (Reτ=180)wall turbulence. Around the channel center we found that the orientation of spheroids is not fully isotropic, even though the fluid vorticity are almost isotropic. The mechanism that gives rise to such particle orientations in wall-turbulence has been found to be related to fluid Lagrangian stretching and compression (Zhao and Andersson 2016). Therefore, we computed the left Cauchy-Green strain tensor along Lagrangian trajectories of tracer spheroids in current flow field and analyzed the fluid Lagrangian stretching and compression. The results indicated that, similar to the earlier observations, the directions of the Lagrangian stretching and compression in near-wall region are in the streamwise and wall-normal directions, respectively. Furthermore, cross over the channel the prolate spheroids aligned with the direction of Lagrangian stretching but oblate spheroids oriented with the direction of Lagrangian compression. The weak anisotropy of orientations of fluid Lagrangian stretching and compression observed at the channel center could be the reason for the aforementioned modest anisotropic orientation of spheroids in channel central region.展开更多
This paper represents a review of the recent researches that investigate the behavior of the gas turbulent flow laden with solid particles. The significant parameters that influence the interactions between the both p...This paper represents a review of the recent researches that investigate the behavior of the gas turbulent flow laden with solid particles. The significant parameters that influence the interactions between the both phases, such as particle size, loading ratio and the gas velocity, have been extensively reviewed. Those parameters are presented in dimensionless numbers in which the applicability of studying its effect in terms of all circumstances of the gas turbulent channel flow at different condition is possible. The represented results show that the turbulence degree is proportional to the particle size. It was found that at the most flow conditions even at low mass ratio, the particle shape, density and size significantly alter the turbulence characteristics. However, the results demonstrate that the particle Reynolds number is a vital sign: the turbulence field becomes weaker if particle Reynolds number is lower than the critical limit and vies verse. The gas velocity has a strong effect on the particles settling along the channel flow and as a result, the pressure drop will be affected.展开更多
The instantaneous degradation of erosion surface of ethylene propylene diene monomer(EPDM)insulation subjected to the particle-laden flow in two operating conditions was measured by using a real-time X-ray radiography...The instantaneous degradation of erosion surface of ethylene propylene diene monomer(EPDM)insulation subjected to the particle-laden flow in two operating conditions was measured by using a real-time X-ray radiography system.The images of its erosion state and dynamic ablation rate were obtained.And the charring-layer was analyzed by using SEM and energy spectrum.The experimental results indicate that the erosion rate of EPDM insulation layer impacted by low speed and low concentration particle flow is relatively small in the 1st second since the motor starting,but increases rapidly in 1 to 2.5 s,while the erosion rate of EPDM insulation layer impacted by high speed and high concentration particle flow increases rapidly in the 1st second;the ablation rate at the section eroded intensively by particle flow increases at first,then decreases,and goes to stabilization after 4.5 s;the higher speed and concentration particle flow are,the deeper particles get into charring layer,which lead to more thermal increment and thinner charring layer.展开更多
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.11132005) and the National Natural Science Foundation of China(Grant No.50876053)
文摘The particle motions of dispersion and transport in air channel flow are investigated using a large eddy simulation(LES) and Lagrangian trajectory method. The mean and fluctuating velocities of the fluids and particles are obtained,and the results are in good agreement with the data in the literature. Particle clustering is observed in the near-wall and low-speed regions. To reveal the evolution process and mechanism of particle dispersion and transport in the turbulent boundary layer, a multi-group Lagrangian tracking is applied when the two-phase flow has become fully developed: the fluid fields are classified into four sub-regions based on the flow characteristics, and particles in the turbulent region are divided accordingly into four groups when the gas–particle flow is fully developed. The spatiotemporal transport of the four groups of particles is then tracked and analyzed. The detailed relationship between particle dispersion and turbulent motion is investigated and discussed.
基金The authors gratefully acknowledge the supports from China Postdoctoral Science Foundation (Grant No. 2014M550327), the opening foundation of the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and the National Natural Science Foundation of China (Grant No. 11372275). The authors are also grateful to Chengbo Yu and Liang Yu for their introduction of the choanoid fluidized bed bioreactor and helpful discussions.
文摘Choanoid fluidized bed bioreactors (CFBBs) are newly developed core devices used in bioartificial liver- support systems to detoxify blood plasma of patients with microencapsulated liver cells. Direct numerical simulations (DNS) with a direct-forcing/fictitious domain (DF/FD) method were conducted to study the hydrodynamic performance of a CFBB. The effects of particle-fluid density ratio, particle number, and fil- ter screens preventing particles flowing out of the reactor were investigated. Depending on density ratio, two flow patterns are evident: the circulation mode in which the suspension rises along one sidewall and descends along the other sidewall, and the non-circulation mode in which the whole suspension roughly flows upward. The circulation mode takes place under non-neutral-buoyancy where the particle sedimentation dominates, whereas the non-circulation mode occurs under pure or near-neutral buoy- ancy with particle-fluid density ratios of unity or near unity. With particle-fluid density ratio of 1.01, the bioartificial liver reactor performs optimally as the significant particle accumulation existing in the non-circulation mode and the large shear forces on particles in the circulation mode are avoided. At higher particle volume fractions, more particles accumulate at the filter screens and a secondary counter circulation to the primary flow is observed at the top of the bed. Modelled as porous media, the filter screens play a negative role on particle fluidization velocities; without screens, particles are fluidized faster because of the higher fluid velocities in the jet center region. This work extends the DF/FD-based DNS to a fluidized bed and accounts for effects from inclined side walls and porous media, providing some hydrodynamics insight that is important for CFBB design and operation optimization.
基金Project supported by the Major Program of the National Natural Science Foundation of China(Grant No.11132008)
文摘The study of nano- and submicron Brownian particle-laden turbulent flow has wide industrial applicability and hence has received much attention. The purpose of the present paper is to provide and review some researches in this field. The topics are related to the universality, particularity, complexity and importance of nano- and submicron Brownian particle-laden turbulent flow, the models of particle general dynamical equation, the collision behavior of particles. Finally, several open research issues are identified.
基金the financial support from the National Natural Science Foundation of China(91752205,11702158 and 11490551)granted by the Programme for Supercomputing(NN2649K)
文摘Axis-symmetric spheroids, such as rod-like and disk-like particles, have been found to orient preferentially in near-wall turbulence by both experiment and numerical simulation. In current work we examined the orientation of inertialess spheroids in a turbulent channel flow at medium friction Reynolds number Reτ=100 given based on the half of channel height. Both elongated prolate spheroid and flat oblate spheroid are considered and further compared with the reference case of spherical particle. The statistical results show that in near wall region the prolate spheroids tend to align in the streamwise direction while the oblate spheroids prefer to orient in the wallnormal direction, which are consistent with earlier observation in low Reynolds number (Reτ=180)wall turbulence. Around the channel center we found that the orientation of spheroids is not fully isotropic, even though the fluid vorticity are almost isotropic. The mechanism that gives rise to such particle orientations in wall-turbulence has been found to be related to fluid Lagrangian stretching and compression (Zhao and Andersson 2016). Therefore, we computed the left Cauchy-Green strain tensor along Lagrangian trajectories of tracer spheroids in current flow field and analyzed the fluid Lagrangian stretching and compression. The results indicated that, similar to the earlier observations, the directions of the Lagrangian stretching and compression in near-wall region are in the streamwise and wall-normal directions, respectively. Furthermore, cross over the channel the prolate spheroids aligned with the direction of Lagrangian stretching but oblate spheroids oriented with the direction of Lagrangian compression. The weak anisotropy of orientations of fluid Lagrangian stretching and compression observed at the channel center could be the reason for the aforementioned modest anisotropic orientation of spheroids in channel central region.
文摘This paper represents a review of the recent researches that investigate the behavior of the gas turbulent flow laden with solid particles. The significant parameters that influence the interactions between the both phases, such as particle size, loading ratio and the gas velocity, have been extensively reviewed. Those parameters are presented in dimensionless numbers in which the applicability of studying its effect in terms of all circumstances of the gas turbulent channel flow at different condition is possible. The represented results show that the turbulence degree is proportional to the particle size. It was found that at the most flow conditions even at low mass ratio, the particle shape, density and size significantly alter the turbulence characteristics. However, the results demonstrate that the particle Reynolds number is a vital sign: the turbulence field becomes weaker if particle Reynolds number is lower than the critical limit and vies verse. The gas velocity has a strong effect on the particles settling along the channel flow and as a result, the pressure drop will be affected.
基金Sponsored by the National Nature Science Foundation of China(50976095)
文摘The instantaneous degradation of erosion surface of ethylene propylene diene monomer(EPDM)insulation subjected to the particle-laden flow in two operating conditions was measured by using a real-time X-ray radiography system.The images of its erosion state and dynamic ablation rate were obtained.And the charring-layer was analyzed by using SEM and energy spectrum.The experimental results indicate that the erosion rate of EPDM insulation layer impacted by low speed and low concentration particle flow is relatively small in the 1st second since the motor starting,but increases rapidly in 1 to 2.5 s,while the erosion rate of EPDM insulation layer impacted by high speed and high concentration particle flow increases rapidly in the 1st second;the ablation rate at the section eroded intensively by particle flow increases at first,then decreases,and goes to stabilization after 4.5 s;the higher speed and concentration particle flow are,the deeper particles get into charring layer,which lead to more thermal increment and thinner charring layer.