筑坝堆石料由于尺寸较大,必须对其按一定比例缩尺后才能用来开展室内三轴试验。但缩尺前后颗粒形状难免会有差异,如何评价颗粒形状变化对堆石料变形特性的影响是十分重要的。引入了高精度的三维激光扫描技术对紫坪铺面板坝筑坝堆石料2.5...筑坝堆石料由于尺寸较大,必须对其按一定比例缩尺后才能用来开展室内三轴试验。但缩尺前后颗粒形状难免会有差异,如何评价颗粒形状变化对堆石料变形特性的影响是十分重要的。引入了高精度的三维激光扫描技术对紫坪铺面板坝筑坝堆石料2.5~5、5~10、10~20 mm以及20~40 mm 4个粒径组的颗粒进行了空间形状分析,在此基础上进一步开展了单一粒组的三轴试验,研究了4个粒组的颗粒形状指标与颗粒破碎率的相关性。试验表明,紫坪铺堆石料颗粒破碎率随着其平均球度的增加而减小,并且呈近似半对数线性关系;随着围压的增加,颗粒形状对颗粒破碎的影响逐渐减弱,颗粒强度的影响逐渐增大。紫坪铺堆石料的颗粒强度随着颗粒尺寸的增加逐渐减小,但其破碎率反而随着颗粒尺寸的增加而逐渐减小,主要是因为试验所采用的紫坪铺堆石料颗粒尺寸越小时,其形状越不规则。因此,研究缩尺效应对颗粒破碎率的影响时,要同时考虑颗粒尺寸和颗粒形状。展开更多
文摘筑坝堆石料由于尺寸较大,必须对其按一定比例缩尺后才能用来开展室内三轴试验。但缩尺前后颗粒形状难免会有差异,如何评价颗粒形状变化对堆石料变形特性的影响是十分重要的。引入了高精度的三维激光扫描技术对紫坪铺面板坝筑坝堆石料2.5~5、5~10、10~20 mm以及20~40 mm 4个粒径组的颗粒进行了空间形状分析,在此基础上进一步开展了单一粒组的三轴试验,研究了4个粒组的颗粒形状指标与颗粒破碎率的相关性。试验表明,紫坪铺堆石料颗粒破碎率随着其平均球度的增加而减小,并且呈近似半对数线性关系;随着围压的增加,颗粒形状对颗粒破碎的影响逐渐减弱,颗粒强度的影响逐渐增大。紫坪铺堆石料的颗粒强度随着颗粒尺寸的增加逐渐减小,但其破碎率反而随着颗粒尺寸的增加而逐渐减小,主要是因为试验所采用的紫坪铺堆石料颗粒尺寸越小时,其形状越不规则。因此,研究缩尺效应对颗粒破碎率的影响时,要同时考虑颗粒尺寸和颗粒形状。