为准确计算渤海海冰的动力过程,本文将质点网格方法(Particle in cell,简称PIC),引入到渤海海冰数值模拟中。该方法首先在欧拉坐标系下对海冰动力方程和连续方程进行差分求解,并插值出各网格内海冰质点的速度和密集度,然后在拉格朗日... 为准确计算渤海海冰的动力过程,本文将质点网格方法(Particle in cell,简称PIC),引入到渤海海冰数值模拟中。该方法首先在欧拉坐标系下对海冰动力方程和连续方程进行差分求解,并插值出各网格内海冰质点的速度和密集度,然后在拉格朗日坐标系下对海冰质点的位移和各网格的平均冰厚进行确定。PIC方法将欧拉法与拉格朗日法相结合,避免了欧拉坐标下有限差分法的数值扩散和拉格朗日坐标下光滑质点流体动力学计算量大的缺点。在对渤海海冰动力过程的数值模拟中采用了Hibler的粘塑性本构模型,并考虑了海冰热力作用过程。利用PIC方法对辽东湾海冰进行了48h数值模拟,结果表明:该方法可成功地处理海冰流变过程,精确计算出冰缘线位置和海冰分布状况,对海冰厚度和密集度的计算精度均优于有限差分法。PIC方法在精确模拟海冰的重叠和堆积过程,以及为冰区油气作业提供详实的海冰信息方面都有良好的应用前景。展开更多
Combining the strengths of Lagrangian and Eulerian descriptions,the coupled Lagrangian–Eulerian methods play an increasingly important role in various subjects.This work reviews their development and application in o...Combining the strengths of Lagrangian and Eulerian descriptions,the coupled Lagrangian–Eulerian methods play an increasingly important role in various subjects.This work reviews their development and application in ocean engineering.Initially,we briefly outline the advantages and disadvantages of the Lagrangian and Eulerian descriptions and the main characteristics of the coupled Lagrangian–Eulerian approach.Then,following the developmental trajectory of these methods,the fundamental formulations and the frameworks of various approaches,including the arbitrary Lagrangian–Eulerian finite element method,the particle-in-cell method,the material point method,and the recently developed Lagrangian–Eulerian stabilized collocation method,are detailedly reviewed.In addition,the article reviews the research progress of these methods with applications in ocean hydrodynamics,focusing on free surface flows,numerical wave generation,wave overturning and breaking,interactions between waves and coastal structures,fluid–rigid body interactions,fluid–elastic body interactions,multiphase flow problems and visualization of ocean flows,etc.Furthermore,the latest research advancements in the numerical stability,accuracy,efficiency,and consistency of the coupled Lagrangian–Eulerian particle methods are reviewed;these advancements enable efficient and highly accurate simulation of complicated multiphysics problems in ocean and coastal engineering.By building on these works,the current challenges and future directions of the hybrid Lagrangian–Eulerian particle methods are summarized.展开更多
In order to understand the physical mechanism of multipactor discharge on dielectric window surface under high power microwave (HPM) excitation in vacuum, an electron movement simulation model based on the particle-...In order to understand the physical mechanism of multipactor discharge on dielectric window surface under high power microwave (HPM) excitation in vacuum, an electron movement simulation model based on the particle-in-cell (PIC) Monte Carlo (MC) is built in this paper. The influences of microwave electromagnetic field and electrostatic field from dielectric surface charging are simultaneously considered in this model. During the simulation, the emission velocity and angle distribution of secondary electrons from the dielectric surface are taken into account. The movement trajectories of electron clusters under complex field excitation are obtained. The influences of emergence angle and microwave electromagnetic parameters on the electron movement are analyzed. It is found that the emergence angle of electrons from the surface has significant effect on its movement, and both the impact energy and return time of electrons oscillate periodically with the phase of microwave field. The number of secondary electrons and induced electrostatic field from multipactoring are also investigated. The results reveal that both values oscillate periodically at twice the microwave frequency, which is due to the electron impact energy oscillating with microwave period. A schematic diagram is proposed to explain the periodical oscillation phenomena.展开更多
This paper shows that the standing, backward- and forward-accelerated large amplitude relativistic electromagnetic solitons induced by intense laser pulse in long underdense collisionless homogeneous plasmas can be ob...This paper shows that the standing, backward- and forward-accelerated large amplitude relativistic electromagnetic solitons induced by intense laser pulse in long underdense collisionless homogeneous plasmas can be observed by particle simulations. In addition to the inhomogeneity of the plasma density, the acceleration of the solitons also depends upon not only the laser amplitude but also the plasma length. The electromagnetic frequency of the solitons is between about half and one of the unperturbed electron plasma frequency. The electrostatic field inside the soliton has a one-cycle structure in space, while the transverse electric and magnetic fields have half-cycle and one-cycle structure respectively. Analytical estimates for the existence of the solitons and their electromagnetic frequencies qualitatively coincide with our simulation results.展开更多
对月球上的月尘静电浮扬现象进行了理论研究,对比分析了影响月球表面静电浮扬强弱的主要因素.研究过程分为两个步骤:首先采用一维PIC(particle in cell)模拟计算了月尘和月球表面的充电过程,然后基于这一结果引进试验粒子,对月尘的静电...对月球上的月尘静电浮扬现象进行了理论研究,对比分析了影响月球表面静电浮扬强弱的主要因素.研究过程分为两个步骤:首先采用一维PIC(particle in cell)模拟计算了月尘和月球表面的充电过程,然后基于这一结果引进试验粒子,对月尘的静电浮扬现象进行了分析研究.结果表明月尘的静电浮扬主要受两个因素的影响:太阳角和月尘颗粒的大小.月尘静电浮扬现象在日出日落时分更容易发生,即太阳角越小越容易引起剧烈的月尘浮扬现象;并且月尘粒径越小,其浮扬高度越高.展开更多
The use of a novel double-cone funnel target with high density layers (HDL) to collimate and focus electrons is investigated by two-dimensional particle-in-cell simulations. The proposed scheme can guide, collimate ...The use of a novel double-cone funnel target with high density layers (HDL) to collimate and focus electrons is investigated by two-dimensional particle-in-cell simulations. The proposed scheme can guide, collimate and focus electron beams to smaller sizes. The collimation reasons are analyzed by the quasi-static magnetic fields generation inside the beam collimator with HDL. It is found that the energy conversion efficiency is increased by a factor of 2.2 in this new scheme in comparison with the that without HDL. Such a target structure has potential for design flexibility and prevents inefficiencies in important applications such as fast ignition, etc.展开更多
A diamond-like carbon circular target is proposed to improve γ-ray emission and pair production with a laser intensity of 8×1022 W cm-2by using 2D particle-in-cell simulations with quantum electrodynamics.It is ...A diamond-like carbon circular target is proposed to improve γ-ray emission and pair production with a laser intensity of 8×1022 W cm-2by using 2D particle-in-cell simulations with quantum electrodynamics.It is found that the circular target can enhance the density of γ-photons significantly more than a plane target, when two colliding circularly polarized lasers irradiate the target.By multi-laser irradiating the circular target, the optical trap of lasers can prevent the high energy electrons accelerated by laser radiation pressure from escaping.Hence, γ-photons with a high density of beyond 5000 ncare obtained through nonlinear Compton backscattering.Meanwhile, 2.7×1011 positrons with an average energy of 230 MeV are achieved via the multiphoton Breit-Wheeler process.Such an ultrabright γ-ray source and dense positron source can be useful in many applications.The optimal target radius and laser mismatching deviation parameters are also discussed in detail.展开更多
文摘 为准确计算渤海海冰的动力过程,本文将质点网格方法(Particle in cell,简称PIC),引入到渤海海冰数值模拟中。该方法首先在欧拉坐标系下对海冰动力方程和连续方程进行差分求解,并插值出各网格内海冰质点的速度和密集度,然后在拉格朗日坐标系下对海冰质点的位移和各网格的平均冰厚进行确定。PIC方法将欧拉法与拉格朗日法相结合,避免了欧拉坐标下有限差分法的数值扩散和拉格朗日坐标下光滑质点流体动力学计算量大的缺点。在对渤海海冰动力过程的数值模拟中采用了Hibler的粘塑性本构模型,并考虑了海冰热力作用过程。利用PIC方法对辽东湾海冰进行了48h数值模拟,结果表明:该方法可成功地处理海冰流变过程,精确计算出冰缘线位置和海冰分布状况,对海冰厚度和密集度的计算精度均优于有限差分法。PIC方法在精确模拟海冰的重叠和堆积过程,以及为冰区油气作业提供详实的海冰信息方面都有良好的应用前景。
基金the support received from the Laoshan Laboratory(No.LSKJ202202000)the National Natural Science Foundation of China(Grant Nos.12032002,U22A20256,and 12302253)the Natural Science Foundation of Beijing(No.L212023)for partially funding this work.
文摘Combining the strengths of Lagrangian and Eulerian descriptions,the coupled Lagrangian–Eulerian methods play an increasingly important role in various subjects.This work reviews their development and application in ocean engineering.Initially,we briefly outline the advantages and disadvantages of the Lagrangian and Eulerian descriptions and the main characteristics of the coupled Lagrangian–Eulerian approach.Then,following the developmental trajectory of these methods,the fundamental formulations and the frameworks of various approaches,including the arbitrary Lagrangian–Eulerian finite element method,the particle-in-cell method,the material point method,and the recently developed Lagrangian–Eulerian stabilized collocation method,are detailedly reviewed.In addition,the article reviews the research progress of these methods with applications in ocean hydrodynamics,focusing on free surface flows,numerical wave generation,wave overturning and breaking,interactions between waves and coastal structures,fluid–rigid body interactions,fluid–elastic body interactions,multiphase flow problems and visualization of ocean flows,etc.Furthermore,the latest research advancements in the numerical stability,accuracy,efficiency,and consistency of the coupled Lagrangian–Eulerian particle methods are reviewed;these advancements enable efficient and highly accurate simulation of complicated multiphysics problems in ocean and coastal engineering.By building on these works,the current challenges and future directions of the hybrid Lagrangian–Eulerian particle methods are summarized.
基金supported in part by the National High Technology Research and Development Program of China
文摘In order to understand the physical mechanism of multipactor discharge on dielectric window surface under high power microwave (HPM) excitation in vacuum, an electron movement simulation model based on the particle-in-cell (PIC) Monte Carlo (MC) is built in this paper. The influences of microwave electromagnetic field and electrostatic field from dielectric surface charging are simultaneously considered in this model. During the simulation, the emission velocity and angle distribution of secondary electrons from the dielectric surface are taken into account. The movement trajectories of electron clusters under complex field excitation are obtained. The influences of emergence angle and microwave electromagnetic parameters on the electron movement are analyzed. It is found that the emergence angle of electrons from the surface has significant effect on its movement, and both the impact energy and return time of electrons oscillate periodically with the phase of microwave field. The number of secondary electrons and induced electrostatic field from multipactoring are also investigated. The results reveal that both values oscillate periodically at twice the microwave frequency, which is due to the electron impact energy oscillating with microwave period. A schematic diagram is proposed to explain the periodical oscillation phenomena.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10575015, 10445003, 10335020 and 10375011), the National Key Laboratory of Laser Fusion, China (Grant No 51480010205ZW0901), the Scientific Research Foundation for Returned 0verseas Chinese Scholars, State Education Ministry and the Foundation of China Academy of Engineering Physics (Grant No 20060217).
文摘This paper shows that the standing, backward- and forward-accelerated large amplitude relativistic electromagnetic solitons induced by intense laser pulse in long underdense collisionless homogeneous plasmas can be observed by particle simulations. In addition to the inhomogeneity of the plasma density, the acceleration of the solitons also depends upon not only the laser amplitude but also the plasma length. The electromagnetic frequency of the solitons is between about half and one of the unperturbed electron plasma frequency. The electrostatic field inside the soliton has a one-cycle structure in space, while the transverse electric and magnetic fields have half-cycle and one-cycle structure respectively. Analytical estimates for the existence of the solitons and their electromagnetic frequencies qualitatively coincide with our simulation results.
文摘对月球上的月尘静电浮扬现象进行了理论研究,对比分析了影响月球表面静电浮扬强弱的主要因素.研究过程分为两个步骤:首先采用一维PIC(particle in cell)模拟计算了月尘和月球表面的充电过程,然后基于这一结果引进试验粒子,对月尘的静电浮扬现象进行了分析研究.结果表明月尘的静电浮扬主要受两个因素的影响:太阳角和月尘颗粒的大小.月尘静电浮扬现象在日出日落时分更容易发生,即太阳角越小越容易引起剧烈的月尘浮扬现象;并且月尘粒径越小,其浮扬高度越高.
基金supported by National Natural Science Foundation of China(NSFC)under Grant Nos.11475026,11664039 and 11305010
文摘The use of a novel double-cone funnel target with high density layers (HDL) to collimate and focus electrons is investigated by two-dimensional particle-in-cell simulations. The proposed scheme can guide, collimate and focus electron beams to smaller sizes. The collimation reasons are analyzed by the quasi-static magnetic fields generation inside the beam collimator with HDL. It is found that the energy conversion efficiency is increased by a factor of 2.2 in this new scheme in comparison with the that without HDL. Such a target structure has potential for design flexibility and prevents inefficiencies in important applications such as fast ignition, etc.
基金supported by the National Natural Science Foundation of China (Nos.11875007, 11305010)supported by the STFC Cockcroft Institute core grant
文摘A diamond-like carbon circular target is proposed to improve γ-ray emission and pair production with a laser intensity of 8×1022 W cm-2by using 2D particle-in-cell simulations with quantum electrodynamics.It is found that the circular target can enhance the density of γ-photons significantly more than a plane target, when two colliding circularly polarized lasers irradiate the target.By multi-laser irradiating the circular target, the optical trap of lasers can prevent the high energy electrons accelerated by laser radiation pressure from escaping.Hence, γ-photons with a high density of beyond 5000 ncare obtained through nonlinear Compton backscattering.Meanwhile, 2.7×1011 positrons with an average energy of 230 MeV are achieved via the multiphoton Breit-Wheeler process.Such an ultrabright γ-ray source and dense positron source can be useful in many applications.The optimal target radius and laser mismatching deviation parameters are also discussed in detail.