全氮是土壤肥力的重要指标,对作物产量具有决定性作用,采用土壤可见-近红外(Vis-NIR)光谱预测技术及时获取土壤全氮含量信息具有重要意义。采用来自5省的450个土壤样本来验证局部加权回归方法(LWR)结合Vis-NIR光谱技术预测大面积土壤全...全氮是土壤肥力的重要指标,对作物产量具有决定性作用,采用土壤可见-近红外(Vis-NIR)光谱预测技术及时获取土壤全氮含量信息具有重要意义。采用来自5省的450个土壤样本来验证局部加权回归方法(LWR)结合Vis-NIR光谱技术预测大面积土壤全氮含量的适用性。结果表明,LWR模型的预测效果优于偏最小二乘回归(PLSR)、人工神经网络(ANN)和支持向量机(SVM),选取主成分数为5,相似样本为40时,模型验证的决定系数(RP2)为0.83,均方根误差(RMSEP)为0.25 g kg-1,测定值标准偏差与标准预测误差的比值(RPD)达到2.41。LWR从建模集中选取与验证样本相似的土样作为局部建模样本,降低了差别大的样本对模型的干扰,从而提高了模型的预测能力。因此,LWR建模方法通过大范围、大样本土壤光谱数据进行大尺度区域的全氮等土壤属性预测时能够发挥更好的作用。展开更多
利用野外实时快速获取的土壤光谱进行土壤有机质(SOM)预测与制图是精确农业与土壤遥感制图的必然需要,利用ASD FieldSpec Pro FR野外型光谱仪实时快速获取的光谱数据,去除噪声较大的边缘波段后,进行倒数的对数转换(Log(1/R))为吸收光谱...利用野外实时快速获取的土壤光谱进行土壤有机质(SOM)预测与制图是精确农业与土壤遥感制图的必然需要,利用ASD FieldSpec Pro FR野外型光谱仪实时快速获取的光谱数据,去除噪声较大的边缘波段后,进行倒数的对数转换(Log(1/R))为吸收光谱。在分析吸收光谱和光谱指数与SOM关系的基础上,采用偏最小二乘回归法进行SOM的建模预测并借助地统计学方法进行SOM空间变异制图研究。结果表明,建模效果好的指标分别为特征波段(R2=0.91,RPD=3.28),归一化光谱指数(R2=0.90,RPD=3.08),特征波段与3个光谱指数组合(R2=0.87,RPD=2.67),全波段(R2=0.95,RPD=4.36)。光谱指标的克里格制图与实测SOM制图表现出相同的空间变异趋势,不同的指标均达到了较好的预测效果。展开更多
在多年平均年最大归一化植被指数(NDVI)的基础上,结合西藏地区年降雨量、年积温等气象资料,利用偏最小二乘(partial least squares,PLS)回归方法对数据进行分析并建立西藏地区草地生物量与归一化植被指数、降雨量等解释变量的回归估测...在多年平均年最大归一化植被指数(NDVI)的基础上,结合西藏地区年降雨量、年积温等气象资料,利用偏最小二乘(partial least squares,PLS)回归方法对数据进行分析并建立西藏地区草地生物量与归一化植被指数、降雨量等解释变量的回归估测模型。并和一般最小二乘法(ordinary least squares,OLS)中的逐步回归法(Stepwise)相比较。结果表明:草地生物量与年最大NDVI值和年降雨量有很强的相关性,偏最小二乘回归在拟合及估测效果上均优于一般最小二乘的逐步回归法,回归方程的相关系数为0.895,取得了较为可靠的结果。偏最小二乘回归在解释变量多、样本个数少、变量间存在多重共线性时尤为有效,为遥感监测植被生物量时的数据处理提供了新的途径。展开更多
以江汉平原滨湖地区不同土地利用类型的土壤样本为例,比较了基于目标土壤理化性质的浓度梯度法、扩展的基于多种理化性质的综合法(P-KS)、基于光谱信息的KS法、最邻近样本去除法(reduce nearest neighbor samples,RNNS)法和基于浓度分...以江汉平原滨湖地区不同土地利用类型的土壤样本为例,比较了基于目标土壤理化性质的浓度梯度法、扩展的基于多种理化性质的综合法(P-KS)、基于光谱信息的KS法、最邻近样本去除法(reduce nearest neighbor samples,RNNS)法和基于浓度分层并结合光谱信息的C-KS、C-RNNS法,基于地类分层再结合上述方法,构建具有不同层次土壤信息代表性的校正集,采用偏最小二乘回归法,建立土壤有机质可见光/近红外光谱反演模型。结果表明,具有单一代表性的浓度梯度法、KS法、RNNS法难以建立适用模型;具有光谱与理化性质二元代表性的C-KS方法模型预测精度得到了明显的提升,相对分析误差(ratio of performance to standard deviation,RPD)为1.66;考虑土地利用类型后,浓度梯度法、RNNS法与C-KS法模型预测精度有明显的提升,RPD分别达到了1.84、1.51、1.75,模型具有良好的适用性。说明具有多层次土壤信息代表性的校正集构建方法对提高土壤有机质可见光/近红外光谱反演模型的适用性具有较好作用。展开更多
花生球蛋白、伴花生球蛋白及亚基含量显著影响蛋白质的凝胶性和溶解性等功能特性,进而影响其在肉制品、植物蛋白饮料中的应用效果。目前常采用提取蛋白质后再用电泳及光密度法测定球蛋白、伴球蛋白及亚基含量的方法,操作步骤繁琐,样品...花生球蛋白、伴花生球蛋白及亚基含量显著影响蛋白质的凝胶性和溶解性等功能特性,进而影响其在肉制品、植物蛋白饮料中的应用效果。目前常采用提取蛋白质后再用电泳及光密度法测定球蛋白、伴球蛋白及亚基含量的方法,操作步骤繁琐,样品损失量大。为此收集了178个花生品种,分别提取蛋白,采用电泳法测定球蛋白、伴球蛋白、23.5和37.5 kDa亚基含量并获得大量数据的基础上,利用近红外光谱技术进行整粒花生样品的光谱扫描,将其与传统方法测定的化学值进行拟合,采用偏最小二乘回归(PLSR)化学计量法构建数学模型。通过比较单一和复合光谱预处理方式,对比模型相关系数和误差评估预测模型性能。确定球蛋白模型最佳预处理方法为2^(nd)-der with Detrend,校正集相关系数为0.92,标准差为1.41;伴球蛋白模型最佳预处理方法为Detrend with 1^(st)-der,校正集相关系数为0.85,标准差为1.46;23.5 kDa亚基含量模型最佳预处理方法为Normalization with 2^(nd)-der,校正集相关系数为0.91,标准差为0.53;37.5 kDa模型最佳预处理方法为Detrend with Baseline,校正集相关系数为0.91,标准差为0.89。外部验证结果表明,球蛋白预测均方根误差(square errors of predi ction,SEP)为1.25,伴球蛋白SEP为0.73,23.5 kDa模型SEP为0.47,37.5 kDa模型SEP为0.75。本研究基于近红外光谱技术实现了对整粒花生进行球蛋白、伴球蛋白、23.5 kDa和37.5 kDa亚基含量的同步、快速和无损检测,为育种专家加工专用品种选育和蛋白加工企业原料选用提供了根据。展开更多
文摘全氮是土壤肥力的重要指标,对作物产量具有决定性作用,采用土壤可见-近红外(Vis-NIR)光谱预测技术及时获取土壤全氮含量信息具有重要意义。采用来自5省的450个土壤样本来验证局部加权回归方法(LWR)结合Vis-NIR光谱技术预测大面积土壤全氮含量的适用性。结果表明,LWR模型的预测效果优于偏最小二乘回归(PLSR)、人工神经网络(ANN)和支持向量机(SVM),选取主成分数为5,相似样本为40时,模型验证的决定系数(RP2)为0.83,均方根误差(RMSEP)为0.25 g kg-1,测定值标准偏差与标准预测误差的比值(RPD)达到2.41。LWR从建模集中选取与验证样本相似的土样作为局部建模样本,降低了差别大的样本对模型的干扰,从而提高了模型的预测能力。因此,LWR建模方法通过大范围、大样本土壤光谱数据进行大尺度区域的全氮等土壤属性预测时能够发挥更好的作用。
文摘利用野外实时快速获取的土壤光谱进行土壤有机质(SOM)预测与制图是精确农业与土壤遥感制图的必然需要,利用ASD FieldSpec Pro FR野外型光谱仪实时快速获取的光谱数据,去除噪声较大的边缘波段后,进行倒数的对数转换(Log(1/R))为吸收光谱。在分析吸收光谱和光谱指数与SOM关系的基础上,采用偏最小二乘回归法进行SOM的建模预测并借助地统计学方法进行SOM空间变异制图研究。结果表明,建模效果好的指标分别为特征波段(R2=0.91,RPD=3.28),归一化光谱指数(R2=0.90,RPD=3.08),特征波段与3个光谱指数组合(R2=0.87,RPD=2.67),全波段(R2=0.95,RPD=4.36)。光谱指标的克里格制图与实测SOM制图表现出相同的空间变异趋势,不同的指标均达到了较好的预测效果。
文摘在多年平均年最大归一化植被指数(NDVI)的基础上,结合西藏地区年降雨量、年积温等气象资料,利用偏最小二乘(partial least squares,PLS)回归方法对数据进行分析并建立西藏地区草地生物量与归一化植被指数、降雨量等解释变量的回归估测模型。并和一般最小二乘法(ordinary least squares,OLS)中的逐步回归法(Stepwise)相比较。结果表明:草地生物量与年最大NDVI值和年降雨量有很强的相关性,偏最小二乘回归在拟合及估测效果上均优于一般最小二乘的逐步回归法,回归方程的相关系数为0.895,取得了较为可靠的结果。偏最小二乘回归在解释变量多、样本个数少、变量间存在多重共线性时尤为有效,为遥感监测植被生物量时的数据处理提供了新的途径。
文摘以江汉平原滨湖地区不同土地利用类型的土壤样本为例,比较了基于目标土壤理化性质的浓度梯度法、扩展的基于多种理化性质的综合法(P-KS)、基于光谱信息的KS法、最邻近样本去除法(reduce nearest neighbor samples,RNNS)法和基于浓度分层并结合光谱信息的C-KS、C-RNNS法,基于地类分层再结合上述方法,构建具有不同层次土壤信息代表性的校正集,采用偏最小二乘回归法,建立土壤有机质可见光/近红外光谱反演模型。结果表明,具有单一代表性的浓度梯度法、KS法、RNNS法难以建立适用模型;具有光谱与理化性质二元代表性的C-KS方法模型预测精度得到了明显的提升,相对分析误差(ratio of performance to standard deviation,RPD)为1.66;考虑土地利用类型后,浓度梯度法、RNNS法与C-KS法模型预测精度有明显的提升,RPD分别达到了1.84、1.51、1.75,模型具有良好的适用性。说明具有多层次土壤信息代表性的校正集构建方法对提高土壤有机质可见光/近红外光谱反演模型的适用性具有较好作用。
文摘花生球蛋白、伴花生球蛋白及亚基含量显著影响蛋白质的凝胶性和溶解性等功能特性,进而影响其在肉制品、植物蛋白饮料中的应用效果。目前常采用提取蛋白质后再用电泳及光密度法测定球蛋白、伴球蛋白及亚基含量的方法,操作步骤繁琐,样品损失量大。为此收集了178个花生品种,分别提取蛋白,采用电泳法测定球蛋白、伴球蛋白、23.5和37.5 kDa亚基含量并获得大量数据的基础上,利用近红外光谱技术进行整粒花生样品的光谱扫描,将其与传统方法测定的化学值进行拟合,采用偏最小二乘回归(PLSR)化学计量法构建数学模型。通过比较单一和复合光谱预处理方式,对比模型相关系数和误差评估预测模型性能。确定球蛋白模型最佳预处理方法为2^(nd)-der with Detrend,校正集相关系数为0.92,标准差为1.41;伴球蛋白模型最佳预处理方法为Detrend with 1^(st)-der,校正集相关系数为0.85,标准差为1.46;23.5 kDa亚基含量模型最佳预处理方法为Normalization with 2^(nd)-der,校正集相关系数为0.91,标准差为0.53;37.5 kDa模型最佳预处理方法为Detrend with Baseline,校正集相关系数为0.91,标准差为0.89。外部验证结果表明,球蛋白预测均方根误差(square errors of predi ction,SEP)为1.25,伴球蛋白SEP为0.73,23.5 kDa模型SEP为0.47,37.5 kDa模型SEP为0.75。本研究基于近红外光谱技术实现了对整粒花生进行球蛋白、伴球蛋白、23.5 kDa和37.5 kDa亚基含量的同步、快速和无损检测,为育种专家加工专用品种选育和蛋白加工企业原料选用提供了根据。