Multi-objective optimization is a new focus of evolutionary computation research. This paper puts forward a new algorithm, which can not only converge quickly, but also keep diversity among population efficiently, in ...Multi-objective optimization is a new focus of evolutionary computation research. This paper puts forward a new algorithm, which can not only converge quickly, but also keep diversity among population efficiently, in order to find the Pareto-optimal set. This new algorithm replaces the worst individual with a newly-created one by 'multi-parent crossover' , so that the population could converge near the true Pareto-optimal solutions in the end. At the same time, this new algorithm adopts niching and fitness-sharing techniques to keep the population in a good distribution. Numerical experiments show that the algorithm is rather effective in solving some Benchmarks. No matter whether the Pareto front of problems is convex or non-convex, continuous or discontinuous, and the problems are with constraints or not, the program turns out to do well.展开更多
A fast algorithm is proposed to solve a kind of high complexity multi-objective problems in this paper. It takes advantages of both the orthogonal design method to search evenly, and the statistical optimal method to ...A fast algorithm is proposed to solve a kind of high complexity multi-objective problems in this paper. It takes advantages of both the orthogonal design method to search evenly, and the statistical optimal method to speed up the computation. It is very suitable for solving high complexity problems, and quickly yields solutions which converge to the Pareto-optimal set with high precision and uniform distribution. Some complicated multi-objective problems are solved by the algorithm and the results show that the algorithm is not only fast but also superior to other MOGAS and MOEAs, such as the currently efficient algorithm SPEA, in terms of the precision, quantity and distribution of solutions.展开更多
基金Supported by the National Natural Science Foundation of China (6013301,60073043,70071042)
文摘Multi-objective optimization is a new focus of evolutionary computation research. This paper puts forward a new algorithm, which can not only converge quickly, but also keep diversity among population efficiently, in order to find the Pareto-optimal set. This new algorithm replaces the worst individual with a newly-created one by 'multi-parent crossover' , so that the population could converge near the true Pareto-optimal solutions in the end. At the same time, this new algorithm adopts niching and fitness-sharing techniques to keep the population in a good distribution. Numerical experiments show that the algorithm is rather effective in solving some Benchmarks. No matter whether the Pareto front of problems is convex or non-convex, continuous or discontinuous, and the problems are with constraints or not, the program turns out to do well.
基金Supported by the National Natural Science Foundation of China(60204001,70071042,60073043,60133010)and Youth Chengguang Project of Science and Technology of Wuhan City(20025001002)
文摘A fast algorithm is proposed to solve a kind of high complexity multi-objective problems in this paper. It takes advantages of both the orthogonal design method to search evenly, and the statistical optimal method to speed up the computation. It is very suitable for solving high complexity problems, and quickly yields solutions which converge to the Pareto-optimal set with high precision and uniform distribution. Some complicated multi-objective problems are solved by the algorithm and the results show that the algorithm is not only fast but also superior to other MOGAS and MOEAs, such as the currently efficient algorithm SPEA, in terms of the precision, quantity and distribution of solutions.