To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an und...To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.展开更多
The use of space robots(SRs)for on-orbit services(OOSs)has been a hot research topic in recent years.However,the space unstructured environment(i.e.:confined spaces,multiple obstacles,and strong radiation interference...The use of space robots(SRs)for on-orbit services(OOSs)has been a hot research topic in recent years.However,the space unstructured environment(i.e.:confined spaces,multiple obstacles,and strong radiation interference)has greatly restricted the application of SRs.The coupled active-passive multilink cable-driven space robot(CAP-MCDSR)has the characteristics of slim body,flexible movement,and electromechanical separation,which is very suitable for extreme space environments.However,the dynamic and stiffness modeling of CAP-MCDSRs is challenging,due to the complex coupling among the active cables,passive cables,joints,and the end-effector.To deal with these problems,this paper proposes a workspace,stiffness analysis and design optimization method for such type of MCDSRs.Firstly,the multi-coupling kinematics relationships among the joint,cables and the end-effector are established.Based on hybrid series-parallel characteristics,the improved coupled active–passive(CAP)dynamic equation is derived.Then,the maximum workspace,the maximum stiffness,and the minimum cable tension are resolved,among them,the overall stiffness is the superposition of the stiffness produced by the active and the passive cable.Furthermore,the workspace,the stiffness,and the cable tension are analyzed by using the nonlinear optimization method(NOPM).Finally,an 8-DOF CAP-MCDSR experiment system is built to verify the proposed modeling and trajectory tracking methods.The proposed modeling and analysis results are very useful for practical space applications,such as designing a new CAP-MCDSR,or utilizing an existing CAP-MCDSR system.展开更多
基金National Natural Science Foundation of China(Grant Nos.51925502,51575150).
文摘To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.
基金supported by the National Natural Science Foundation of China(No.62103454)the Key-Area Research and Development Program of Guangdong Province(No.2020B1111010001)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515110680)the Shenzhen Municipal Basic Research Project for Natural Science Foundation(No.JCYJ20190806143408992)the Fundamental Research Funds for the Central Universities(No.2021qntd08)Sun Yat-sen University。
文摘The use of space robots(SRs)for on-orbit services(OOSs)has been a hot research topic in recent years.However,the space unstructured environment(i.e.:confined spaces,multiple obstacles,and strong radiation interference)has greatly restricted the application of SRs.The coupled active-passive multilink cable-driven space robot(CAP-MCDSR)has the characteristics of slim body,flexible movement,and electromechanical separation,which is very suitable for extreme space environments.However,the dynamic and stiffness modeling of CAP-MCDSRs is challenging,due to the complex coupling among the active cables,passive cables,joints,and the end-effector.To deal with these problems,this paper proposes a workspace,stiffness analysis and design optimization method for such type of MCDSRs.Firstly,the multi-coupling kinematics relationships among the joint,cables and the end-effector are established.Based on hybrid series-parallel characteristics,the improved coupled active–passive(CAP)dynamic equation is derived.Then,the maximum workspace,the maximum stiffness,and the minimum cable tension are resolved,among them,the overall stiffness is the superposition of the stiffness produced by the active and the passive cable.Furthermore,the workspace,the stiffness,and the cable tension are analyzed by using the nonlinear optimization method(NOPM).Finally,an 8-DOF CAP-MCDSR experiment system is built to verify the proposed modeling and trajectory tracking methods.The proposed modeling and analysis results are very useful for practical space applications,such as designing a new CAP-MCDSR,or utilizing an existing CAP-MCDSR system.