This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr...This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.展开更多
The lower-mobility parallel mechanism has been widely used in the engineering field due to its numerous excellent characteristics.However,little work has been devoted to the actuator selection and placement that best ...The lower-mobility parallel mechanism has been widely used in the engineering field due to its numerous excellent characteristics.However,little work has been devoted to the actuator selection and placement that best satisfy the system's functional requirements during concept design.In this study,a unified approach for synthesizing the actuation spaces of both rigid and flexure parallel mechanisms has been presented,and all possible combinations of inputs could be obtained,laying a theoretical foundation for the subsequent optimization of inputs.According to the linear independence of actuation space and constraint space of the lower-mobility parallel mechanism,a general expression of actuation spaces in the format of screw systems is deduced,a unified synthesis process for the lower-mobility parallel mechanism is derived,and the efficiency of the method is validated with two selective examples based on screw theory.This study presents a theoretical framework for the input selection problems of parallel mechanisms,aiming to help designers select and place actuators in a correct and even optimal way after the configuration design.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51975037,52375075).
文摘This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.
基金Supported by National Natural Science Foundation of China(Grant No.51775475).
文摘The lower-mobility parallel mechanism has been widely used in the engineering field due to its numerous excellent characteristics.However,little work has been devoted to the actuator selection and placement that best satisfy the system's functional requirements during concept design.In this study,a unified approach for synthesizing the actuation spaces of both rigid and flexure parallel mechanisms has been presented,and all possible combinations of inputs could be obtained,laying a theoretical foundation for the subsequent optimization of inputs.According to the linear independence of actuation space and constraint space of the lower-mobility parallel mechanism,a general expression of actuation spaces in the format of screw systems is deduced,a unified synthesis process for the lower-mobility parallel mechanism is derived,and the efficiency of the method is validated with two selective examples based on screw theory.This study presents a theoretical framework for the input selection problems of parallel mechanisms,aiming to help designers select and place actuators in a correct and even optimal way after the configuration design.