针对云台网络摄像机监控系统,提出一种基于摄像机视频流的全景图生成算法,以构建更大的监控场景。根据帧间重叠区域的大小选取关键帧,进行柱面投影,利用计算性能优越的SURF(Speeded Up Robust Features,加速鲁棒性特征)算法对所选取的...针对云台网络摄像机监控系统,提出一种基于摄像机视频流的全景图生成算法,以构建更大的监控场景。根据帧间重叠区域的大小选取关键帧,进行柱面投影,利用计算性能优越的SURF(Speeded Up Robust Features,加速鲁棒性特征)算法对所选取的关键帧进行特征点提取,使用基于哈希映射的特征点匹配算法加快特征点的匹配,并结合RANSAC(RANdom SAmple Consensus,随机抽样一致)算法剔除误匹配,估计关键帧之间的变换关系。实验结果表明,该方法能较好实现视频序列的快速拼接,鲁棒性强,具有较高的实用价值。展开更多
在全景视频目标跟踪过程中,由于光照条件变化复杂和目标相对镜头运动时尺度变化剧烈,目标跟踪算法存在精度低和适用性差等问题。为了解决这个问题,提出了一种基于改进SiameseRPN的全景视频目标跟踪算法。首先采用MobileNetV3中的网络结...在全景视频目标跟踪过程中,由于光照条件变化复杂和目标相对镜头运动时尺度变化剧烈,目标跟踪算法存在精度低和适用性差等问题。为了解决这个问题,提出了一种基于改进SiameseRPN的全景视频目标跟踪算法。首先采用MobileNetV3中的网络结构提取深度特征,使算法对全景视频序列中出现的场景缺陷有更好的适应性,并利用Squeeze and Excite模块增加网络对特征选择的敏感度。提出并构建了一种基于双线性插值的特征融合模块,运用双线性插值的方法使输出的后三层深度特征具有相同尺度,并融合这三层特征以用于网络预测。最后利用分类分支预测出当前序列中的正负样本,利用回归分支预测当前输出目标的位置信息和尺度信息,最终输出目标的位置信息。实验结果表明:所提算法可以有效地解决全景数据中的局部图像质量欠佳和尺度变化的问题,在保持实时跟踪性能的同时,具有较高的跟踪精度,对目标跟踪中出现的小目标、目标遮挡及多目标交叉运动等情况表现出良好的适应性,具有良好的视觉效果和较高的跟踪得分。展开更多
针对全景视频数据因量大和延时敏感的特点造成的视频失真问题,提出一种360°全景视频自适应前向纠错(Forward Error Correction,FEC)编码算法,根据实时网络状况对全景视频的图块进行编码比特率和FEC编码率的优化匹配,将全景视频传...针对全景视频数据因量大和延时敏感的特点造成的视频失真问题,提出一种360°全景视频自适应前向纠错(Forward Error Correction,FEC)编码算法,根据实时网络状况对全景视频的图块进行编码比特率和FEC编码率的优化匹配,将全景视频传输质量最大化,减少视频失真。实验结果证明,与传统视频传输算法相比,该算法可以减少视频失真,且视频峰值信噪比(Peak Signal to Noise Ratio,PSNR)提高5~7 dB。展开更多
文摘在全景视频目标跟踪过程中,由于光照条件变化复杂和目标相对镜头运动时尺度变化剧烈,目标跟踪算法存在精度低和适用性差等问题。为了解决这个问题,提出了一种基于改进SiameseRPN的全景视频目标跟踪算法。首先采用MobileNetV3中的网络结构提取深度特征,使算法对全景视频序列中出现的场景缺陷有更好的适应性,并利用Squeeze and Excite模块增加网络对特征选择的敏感度。提出并构建了一种基于双线性插值的特征融合模块,运用双线性插值的方法使输出的后三层深度特征具有相同尺度,并融合这三层特征以用于网络预测。最后利用分类分支预测出当前序列中的正负样本,利用回归分支预测当前输出目标的位置信息和尺度信息,最终输出目标的位置信息。实验结果表明:所提算法可以有效地解决全景数据中的局部图像质量欠佳和尺度变化的问题,在保持实时跟踪性能的同时,具有较高的跟踪精度,对目标跟踪中出现的小目标、目标遮挡及多目标交叉运动等情况表现出良好的适应性,具有良好的视觉效果和较高的跟踪得分。
文摘针对全景视频数据因量大和延时敏感的特点造成的视频失真问题,提出一种360°全景视频自适应前向纠错(Forward Error Correction,FEC)编码算法,根据实时网络状况对全景视频的图块进行编码比特率和FEC编码率的优化匹配,将全景视频传输质量最大化,减少视频失真。实验结果证明,与传统视频传输算法相比,该算法可以减少视频失真,且视频峰值信噪比(Peak Signal to Noise Ratio,PSNR)提高5~7 dB。